首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of dephospho- and phosphofructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae and of two mutant enzymes in which the phosphorylatable Ser11 had been changed by site-directed mutagenesis (Ser----Ala and Ser----Asp) were studied to clarify the role of cyclic AMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase. The mutant enzymes and wild type Ser11 fructose-1,6-bisphosphatase were overexpressed and purified to homogeneity. Phosphofructose-1,6-bisphosphatase was prepared by in vitro phosphorylation. The comparison of the properties of the above enzymes demonstrated that all four had similar maximum activity. However, the phosphoenzyme was about 3-fold more sensitive to AMP and fructose 2,6-bisphosphate inhibition than the dephosphoenzyme, suggesting that regulation operates in vivo by this mechanism, leading to decreased enzyme activity. The purified mutant enzymes Ala11 and Asp11 exhibited properties closely similar to those of dephospho- and phosphofructose-1,6-bisphosphatase, respectively. These results indicate that the functional group at residue 11 is an important factor in the regulation of fructose-1,6-bisphosphatase activity and that Ser(P) can be functionally substituted by Asp in this enzyme.  相似文献   

2.
A purification procedure for rat hepatic fructose-1,6-bisphosphatase, described earlier, has been improved, resulting in an enzyme preparation with a neutral pH optimum and with both phosphorylatable serine residues present. The subunit Mr was 40,000. Phosphorylation in vitro with cyclic AMP-dependent protein kinase resulted in the incorporation of 1.4 mol of phosphate/mol of subunit and led to an almost 2-fold decrease in apparent Km for fructose-1,6-bisphosphate. In contrast to yeast fructose-1,6-bisphosphatase, fructose-2,6-bisphosphate had no effect on the rate of phosphorylation or dephosphorylation of the intact enzyme. The effects of the composition of the assay medium, with regard to buffering substance and Mg2+ concentration, on the apparent Km values of phosphorylated and unphosphorylated enzyme were investigated. The kinetics of phosphorylated and unphosphorylated fructose-1,6-bisphosphatase were studied with special reference to the inhibitory effects of adenine nucleotides and fructose-2,6-bisphosphate. Unphosphorylated fructose-1,6-bisphosphatase was more susceptible to inhibition by both AMP and fructose 2,6-bisphosphate than phosphorylated enzyme, at high and low substrate concentrations. Both ATP and ADP had a similar effect on the two enzyme forms, ADP being the more potent inhibitor. Finally, the combined effect of several inhibitors at physiological concentrations was studied. Under conditions resembling the gluconeogenic state, phosphorylated fructose-1,6-bisphosphatase was found to have twice the activity of the unphosphorylated enzyme.  相似文献   

3.
Fructose-1,6-bisphosphatase purified from Saccharomyces cerevisiae is phosphorylated in vitro by a cAMP-dependent protein kinase. The phosphorylation reaction incorporates 1 mol of phosphate/mol of enzyme and is greatly stimulated by fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate acts upon fructose-1,6-bisphosphatase, not on the protein kinase. The phosphorylation of fructose 1,6-bisphosphatase lowers its activity by about 50%. The characteristics of the phosphorylation reaction in vitro show that this modification is responsible for the inactivation of fructose-1,6-bisphosphatase observed in vivo.  相似文献   

4.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

5.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

6.
Homogeneous preparations of fructose-1,6-bisphosphatase from mouse, man, rabbit, pig, and rat were tested as substrates for cyclic AMP-dependent protein kinase. Up to 1 mol of [32P]phosphate per mole enzyme subunit was incorporated into fructose-1,6-bisphosphatase from pig and rabbit liver, which should be compared with 2.6 mol of phosphate per mole enzyme subunit in the case of the rat liver enzyme. The phosphorylation of fructose-1,6-bisphosphatase from the livers of man and mouse was negligible. Phosphorylation of pig and rabbit fructose-1,6-bisphosphatase decreased the apparent Km for fructose-1,6-bisphosphate, but in contrast to the case of the rat liver enzyme it did not change the inhibition constants for AMP and fructose-2,6-bisphosphate. The phosphorylation sites in rabbit and pig liver fructose-1,6-bisphosphatase were located close to the carboxyterminal of the polypeptide chains, since trypsin treatment of the phosphorylated enzyme quantitatively removed all of the protein-bound radioactivity without significantly altering the subunit molecular weight and with a maintained neutral pH optimum.  相似文献   

7.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

8.
K N Ekdahl  P Ekman 《FEBS letters》1984,167(2):203-209
Rat liver fructose-1,6-bisphosphatase was partially phosphorylated in vitro and separated into unphosphorylated and fully phosphorylated enzyme. The effects of fructose 2,6-bisphosphate and AMP on these two enzyme forms were examined. Unphosphorylated fructose-1,6-bisphosphatase was more easily inhibited by both effectors. Fructose 2,6-bisphosphate affected both K0.5 and Vmax, while the main effect of AMP was to lower Vmax. Fructose 2,6-bisphosphate and AMP together acted synergistically to decrease the activity of fructose-1,6-bisphosphatase, and since unphosphorylated and phosphorylated enzyme forms are affected differently, this might be a way to amplify the effect of phosphorylation.  相似文献   

9.
Amino acid sequence homology among fructose-1,6-bisphosphatases   总被引:2,自引:0,他引:2  
The hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate is a key reaction of carbohydrate metabolism. The enzyme that catalyzes this reaction, fructose-1,6-bisphosphatase, appears to be present in all forms of living organisms. Regulation of the enzyme activity, however, occurs by a variety of distinct mechanisms. These include AMP inhibition (most sources), cyclic AMP-dependent phosphorylation (yeast), and light-dependent activation (chloroplast). In the present studies, we have made a comparison of the primary structure of mammalian fructose-1,6-bisphosphatase with the sequence of peptides isolated from the yeast Saccharomyces cerevisiae, Escherichia coli, and spinach chloroplast enzymes. Our results demonstrate a high degree of sequence homology, suggesting a common evolutionary origin for all fructose-1,6-bisphosphatases.  相似文献   

10.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   

11.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

12.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

13.
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was phosphorylated by cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Treatment of the 32P-labeled enzyme with thermolysin removed all of the radioactivity from the enzyme core and produced a single labeled peptide. The phosphopeptide was purified by ion exchange chromatography, gel filtration, and reverse phase high pressure liquid chromatography. The sequence of the 12-amino acid peptide was found to be Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser(P)-Ser-Ile-Pro-Gln. Correlation of the extent of phosphorylation with activity showed that a 50% decrease in the ratio of kinase activity to bisphosphate activity occurred when only 0.25 mol of phosphate was incorporated per mol of enzyme subunit, and maximal changes occurred with 0.7 mol incorporated. The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of the native bifunctional enzyme was compared with that of other rat liver protein substrates. The Km for 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (10 microM) was less than that for rat liver pyruvate kinase (39 microM), fructose-1,6-bisphosphatase (222 microM), and 6- phosphofructose -1-kinase (230 microM). Comparison of the initial rate of phosphorylation of a number of protein substrates of the cyclic AMP-dependent protein kinase revealed that only skeletal muscle phosphorylase kinase was phosphorylated more rapidly than the bifunctional enzyme. Skeletal muscle glycogen synthase, heart regulatory subunit of cyclic AMP-dependent protein kinase, and liver pyruvate kinase were phosphorylated at rates nearly equal to that of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, while phosphorylation of fructose-1,6-bisphosphatase and 6-phosphofructo-1-kinase was barely detectable. Phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was not catalyzed by any other protein kinase tested. These results are consistent with a primary role of the cyclic AMP-dependent protein kinase in regulation of the enzyme in intact liver.  相似文献   

14.
Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate   总被引:20,自引:0,他引:20  
Rat liver fructose-1,6-bisphosphatase, which was assayed by measuring the release of 32P from fructose 1,6-[1-32P]bisphosphate at pH 7.5, exhibited hyperbolic kinetics with regard to its substrate. beta-D-Fructose 2,6-bisphosphate, an activator of hepatic phosphofructokinase, was found to be a potent inhibitor of the enzyme. The inhibition was competitive in nature and the Ki was estimated to be 0.5 microM. The Hill coefficient for the reaction was 1.0 in the presence and absence of fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate also enhanced inhibition of the enzyme by the allosteric inhibitor AMP. The possible role of fructose 2,6-bisphosphate in the regulation of substrate cycling at the fructose-1,6-bisphosphatase step is discussed.  相似文献   

15.
A new purification procedure for rat liver fructose-1,6-bisphosphatase that involves use of Procion Red-Sepharose is described. The purified enzyme was homogeneous, had a subunit Mr of 40 000-41 000 and seemed to be undegraded. The enzyme could be phosphorylated by cyclic AMP-dependent protein kinase with a stoicheiometry of one per subunit. Phosphorylation caused a 2-fold decrease in the Km of the enzyme for fructose 1,6-bisphosphate, but did not affect its allosteric responses to AMP, Mg2+ and fructose 2,6-bisphosphate.  相似文献   

16.
Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme.  相似文献   

17.
The activation of oxidized chloroplast fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate and magnesium previously described at pH 7.5 [Soulié et al. (1988) Eur. J. Biochem. 176, 111-117] has now been studied at pH 8, the pH which prevails under light conditions in the chloroplast stroma. The process obeys a hysteretic mechanism but the rate of activation is considerably increased with half-times down to 50 s and the apparent dissociation constant of fructose 2,6-bisphosphate from the enzyme is lowered from 1 mM at pH 7.5 to 3.3 microM at pH 8. The process is strictly metal-dependent with a half-saturation concentration of 2.54 mM for magnesium. The conformational transition postulated in our hysteretic model has been investigated through both the spectrophometric and chemical modification approaches. The activation of the enzyme by fructose 2,6-bisphosphate in the presence of magnesium results in a slow modification of the ultraviolet absorption spectrum of the enzyme with an overall increase of 3% at 290 nm. The same treatment leads to the protection of two free sulfhydryls and an increased reactivity of one sulfhydryl group/enzyme monomer to modification by 5,5'-dithiobis(2-nitrobenzoic acid). The titration of the exposed cysteinyl residue prevents the relaxation of enzyme species induced by fructose 2,6-bisphosphate to the native form. The activation of chloroplast fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is discussed both with respect to the understanding of the overall regulation properties of the enzyme and to a possible physiological significance of this process.  相似文献   

18.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

19.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

20.
Bovine brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was purified to homogeneity and characterized. This bifunctional enzyme is a homodimer with a subunit molecular weight of 120,000, which is twice that of all other known bifunctional enzyme isozymes. The kinase/bisphosphatase activity ratio was 3.0. The Km values for fructose 6-phosphate and ATP of the 6-phosphofructo-2-kinase were 27 and 55 microM, respectively. The Km for fructose 2,6-bisphosphate and the Ki for fructose 6-phosphate for the bisphosphatase were 70 and 20 microM, respectively. Physiologic concentrations of citrate had reciprocal effects on the enzyme's activities, i.e. inhibiting the kinase (Ki of 35 microM) and activating the bisphosphatase (Ka of 16 microM). Phosphorylation of the brain enzyme was catalyzed by the cyclic AMP-dependent protein kinase with a stoichiometry of 0.9 mol of phosphate/mol of subunit and at a rate similar to that seen with the liver isozyme. In contrast to the liver isozyme, the kinetic properties of the brain enzyme were unaffected by cyclic AMP-dependent protein kinase phosphorylation, and also was not a substrate for protein kinase C. The brain isozyme formed a labeled phosphoenzyme intermediate and cross-reacted with antibodies raised against the liver isozyme. However, the NH2-terminal amino acid sequence of a peptide generated by cyanogen bromide cleavage of the enzyme had no identity with any known bifunctional enzyme sequences. These results indicate that a novel isozyme, which is related to other 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozymes, is expressed specifically in neural tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号