首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roles of Pofut1 and O-fucose in mammalian Notch signaling   总被引:1,自引:0,他引:1  
Mammalian Notch receptors contain 29-36 epidermal growth factor (EGF)-like repeats that may be modified by protein O-fucosyltransferase 1 (Pofut1), an essential component of the canonical Notch signaling pathway. The Drosophila orthologue Ofut1 is proposed to function as both a chaperone required for stable cell surface expression of Notch and a protein O-fucosyltransferase. Here we investigate these dual roles of Pofut1 in relation to endogenous Notch receptors of Chinese hamster ovary and murine embryonic stem (ES) cells. We show that fucosylation-deficient Lec13 Chinese hamster ovary cells have wild type levels of Pofut1 and cell surface Notch receptors. Nevertheless, they have reduced binding of Notch ligands and low levels of Delta1- and Jagged1-induced Notch signaling. Exogenous fucose but not galactose rescues both ligand binding and Notch signaling. Murine ES cells lacking Pofut1 also have wild type levels of cell surface Notch receptors. However, Pofut1-/- ES cells do not bind Notch ligands or exhibit Notch signaling. Although overexpression of fucosyltransferase-defective Pofut1 R245A in Pofut1-/- cells partially rescues ligand binding and Notch signaling, this effect is not specific. The same rescue is achieved by an unrelated, inactive, endoplasmic reticulum glucosidase. Therefore, mammalian Notch receptors require Pofut1 for the generation of optimally functional Notch receptors, but, in contrast to Drosophila, Pofut1 is not required for stable cell surface expression of Notch. Importantly, we also show that, under certain circumstances, mammalian Notch receptors are capable of signaling in the absence of Pofut1 and O-fucose.  相似文献   

2.
Epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) are both small cysteine-knot motifs known to be O-fucosylated. The enzyme responsible for the addition of O-fucose to EGF repeats, protein O-fucosyltransferase 1 (POFUT1), has been identified and shown to be essential in Notch signaling. Fringe, an O-fucose beta1,3-N-acetylglucosaminyltransferase, elongates O-fucose on specific EGF repeats from Notch to form a disaccharide that can be further elongated to a tetrasaccharide. TSRs are found in many extracellular matrix proteins and are involved in protein-protein interactions. The O-fucose moiety on TSRs can be further elongated with glucose to form a disaccharide. The discovery of O-fucose on TSRs raised the question of whether POFUT1, or a different enzyme, adds O-fucose to TSRs. Here we demonstrate the existence of a TSR-specific O-fucosyltransferase distinct from POFUT1. Similar to POFUT1, the novel TSR-specific O-fucosyltransferase is a soluble enzyme that requires a properly folded TSR as an acceptor substrate. In addition, we found that a previously identified fucose-specific beta1,3-glucosyltransferase adds glucose to O-fucose on TSRs, but it does not modify O-fucose on an EGF repeat. Similarly, Lunatic fringe, Manic fringe, and Radical fringe are all capable of modifying O-fucose on an EGF repeat, but not on a TSR. Taken together, these results suggest that two distinct O-fucosylation pathways exist in cells, one specific for EGF repeat and the other for TSRs.  相似文献   

3.
O-Fucose is an unusual form of glycosylation found on epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) in many secreted and transmembrane proteins. Recently O-fucose on EGF repeats was shown to play important roles in Notch signaling. In contrast, physiological roles for O-fucose on TSRs are unknown. In the accompanying paper (Luo, Y., Nita-Lazar, A., and Haltiwanger, R. S. (2006) J. Biol. Chem. 281, 9385-9392), we demonstrated that an enzyme distinct from protein O-fucosyltransferase 1 adds O-fucose to TSRs. A known homologue of O-fucosyltransferase 1 is putative protein O-fucosyltransferase 2. The cDNA sequence encoding O-fucosyltransferase 2 was originally identified during a data base search for fucosyltransferases in Drosophila. Like O-fucosyltransferase 1, O-fucosyltransferase 2 is conserved from Caenorhabditis elegans to humans. Although O-fucosyltransferase 2 was assumed to be another protein O-fucosyltransferase, no biochemical characterization existed supporting this contention. Here we show that RNAi-mediated reduction of the O-fucosyltransferase 2 message significantly decreased TSR-specific O-fucosyltransferase activity in Drosophila S2 cells. We also found that O-fucosyltransferase 2 is predominantly localized in the endoplasmic reticulum compartment of these cells. Furthermore, we expressed recombinant Drosophila O-fucosyltransferase 2 and showed that it O-fucosylates TSRs but not EGF repeats in vitro. These results demonstrate that O-fucosyltransferase 2 is in fact a TSR-specific O-fucosyltransferase.  相似文献   

4.
The extracellular domain of mouse Notch1 contains 36 tandem epidermal growth factor-like (EGF) repeats, many of which are modified with O-fucose. Previous work from several laboratories has indicated that O-fucosylation plays an important role in ligand mediated Notch activation. Nonetheless, it is not clear whether all, or a subset, of the EGF repeats need to be O-fucosylated. Three O-fucose sites are invariantly conserved in all Notch homologues with 36 EGF repeats (within EGF repeats 12, 26, and 27). To investigate which O-fucose sites on Notch1 are important for ligand-mediated signaling, we mutated the three invariant O-fucose sites in mouse Notch1, along with several less highly conserved sites, and evaluated their ability to transduce Jagged1- and Delta1-mediated signaling in a cell-based assay. Our analysis revealed that mutation of any of the three invariant O-fucose sites resulted in significant changes in both Delta1 and Jagged1 mediated signaling, but mutations in less highly conserved sites had no detectable effect. Interestingly, mutation of each invariant site gave a distinct effect on Notch function. Mutation of the O-fucose site in EGF repeat 12 resulted in loss of Delta1 and Jagged1 signaling, while mutation of the O-fucose site in EGF repeat 26 resulted in hyperactivation of both Delta1 and Jagged1 signaling. Mutation of the O-fucose site in EGF repeat 27 resulted in faulty trafficking of the Notch receptor to the cell surface and a decreased S1 processing of the receptor. These results indicate that the most highly conserved O-fucose sites in Notch1 are important for both processing and ligand-mediated signaling in the context of a cell-based signaling assay.  相似文献   

5.
Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.  相似文献   

6.
7.
Notch signaling is involved in neurogenesis, including that of the peripheral nervous system as derived from neural crest cells (NCCs). However, it remains unclear which step is regulated by this signaling. To address this question, we took advantage of the Cre-loxP system to specifically eliminate the protein O-fucosyltransferase 1 (Pofut1) gene, which is a core component of Notch signaling, in NCCs. NCC-specific Pofut1-knockout mice died within 1 day of birth, accompanied by a defect of enteric nervous system (ENS) development. These embryos showed a reduction in enteric neural crest cells (ENCCs) resulting from premature neurogenesis. We found that Sox10 expression, which is normally maintained in ENCC progenitors, was decreased in Pofut1-null ENCCs. By contrast, the number of ENCCs that expressed Mash1, a potent repressor of Sox10, was increased in the Pofut1-null mouse. Given that Mash1 is suppressed via the Notch signaling pathway, we propose a model in which ENCCs have a cell-autonomous differentiating program for neurons as reflected in the expression of Mash1, and in which Notch signaling is required for the maintenance of ENS progenitors by attenuating this cell-autonomous program via the suppression of Mash1.  相似文献   

8.
To identify roles in spermatogenesis for major subclasses of N- and O-glycans and Notch signaling, male mice carrying floxed C1galt1, Pofut1, Notch1 or Mgat1 alleles and a testis-specific Cre recombinase transgene were generated. T-synthase (C1GALT1) transfers Gal to generate core 1 and core 2 mucin O-glycans; POFUT1 transfers O-fucose to particular epidermal growth factor-like repeats and is essential for canonical Notch signaling; and MGAT1 (GlcNAcT-I) transfers GlcNAc to initiate hybrid and complex N-glycan synthesis. Cre recombinase transgenes driven by various promoters were investigated, including Stra8-iCre expressed in spermatogonia, Sycp1-Cre expressed in spermatocytes, Prm1-Cre expressed in spermatids, and AMH-Cre expressed in Sertoli cells. All Cre transgenes deleted floxed alleles, but efficiencies varied widely. Stra8-iCre was the most effective, deleting floxed Notch1 and Mgat1 alleles with 100% efficiency and floxed C1galt1 and Pofut1 alleles with ~80% efficiency, based on transmission of deleted alleles. Removal of C1galt1, Pofut1, or Notch1 in spermatogonia had no effect on testicular weight, histology, or fertility. However, males in which the synthesis of complex N-glycans was blocked by deletion of Mgat1 in spermatogonia did not produce sperm. Spermatogonia, spermatocytes, and spermatids were generated, but most spermatids formed giant multinucleated cells or symplasts, and apoptosis was increased. Therefore, although core 1 and 2 mucin O-glycans, NOTCH1, POFUT1, O-fucose glycans, and Notch signaling are dispensable, MGAT1 and complex N-glycans are essential for spermatogenesis.  相似文献   

9.
Protein O-fucosyltransferase 1 (Pofut1), which catalyzes the addition of O-linked fucose to the EGF domains of the Notch receptor, is indispensable for Notch signaling activation. However, the mechanism of action of Pofut1 in mice is still unclear. Mouse embryos lacking Pofut1 shows defects in valve formation and trabeculation in the cardiovascular system, which are almost identical abnormalities to those of the RBP-Jk mutants. In our current study, we have examined the epistatic relationship between the functions of Pofut1 and activated-Notch1 (NICD1) by taking advantage of the fact that forced expression of NICD1 results in myocardial defects. These defects were still evident in NICD1-expressing embryos irrespective of the presence or absence of Pofut1, which indicates that Pofut1 is required for Notch signaling upstream of NICD1. We further found that Pofut1-null cells do not possess normally localized Notch1 receptors, which may results in their lack of interaction with the Dll1 ligand in the presomitic mesoderm where Notch signaling plays a pivotal role. We propose that altered trafficking pathways may account for the abnormal accumulation of the Notch1 receptor in the endoplasmic reticulum in Pofut1-null mouse embryos.  相似文献   

10.
11.
Regulation of notch signaling by o-linked fucose   总被引:11,自引:0,他引:11  
Okajima T  Irvine KD 《Cell》2002,111(6):893-904
  相似文献   

12.
O-Fucosylation is a post-translational glycosylation in which an O-fucose is covalently attached to the hydroxyl group of a specific serine or threonine residue. This modification occurs within the consensus sequence C2X(4-5)(S/T)C3 present on epidermal growth factor-like repeats of several proteins, including the Notch receptors and their ligands. The enzyme responsible for the addition of O-fucose to epidermal growth factor-like repeats is protein O-fucosyltransferase 1. Protein O-fucosyltransferase 1-mediated O-fucosylation is essential in Notch signaling, folding and targeting to the cell surface. Here, we studied the expression pattern of protein O-fucosyltransferase 1 in cattle and showed that the active enzyme is present in all tissues examined from embryo and adult as a glycoprotein with two N-glycans. By comparing protein O-fucosyltransferase 1 sequences available in databases, we observed that mammalian protein O-fucosyltransferase 1 enzymes possess two putative N-glycosylation sites, and that only the first is conserved among bilaterians. To gain more insight regarding the significance of N-glycans on protein O-fucosyltransferase 1, we substituted, by site-directed mutagenesis, bovine protein O-fucosyltransferase 1 N65, N163 or both, with L or Q. We demonstrated that the loss of N-glycan on N163 caused a slight decrease in protein O-fucosyltransferase 1 activity. In contrast, glycosylation of N65 was crucial for protein O-fucosyltransferase 1 functionality. Loss of glycosylation at N65 resulted in aggregation of protein O-fucosyltransferase 1, suggesting that N-glycosylation at this site is essential for proper folding of the enzyme.  相似文献   

13.
Notch receptors are glycoproteins that mediate a wide range of developmental processes. Notch is modified in its epidermal growth factor-like domains by the addition of fucose to serine or threonine residues. O-Fucosylation is mediated by protein O-fucosyltransferase 1, and down-regulation of this enzyme by RNA interference or mutation of the Ofut1 gene in Drosophila or by mutation of the Pofut1 gene in mouse prevents Notch signaling. To investigate the molecular basis for the requirement for O-linked fucose on Notch, we assayed the ability of tagged, soluble forms of the Notch extracellular domain to bind to its ligands, Delta and Serrate. Down-regulation of OFUT1 by RNA interference in Notch-secreting cells inhibits both Delta-Notch and Serrate-Notch binding, demonstrating a requirement for O-linked fucose for efficient binding of Notch to its ligands. Conversely, overexpression of OFUT1 in cultured cells increases Serrate-Notch binding but inhibits Delta-Notch binding. These effects of OFUT1 are consistent with the consequences of OFUT1 overexpression on Notch signaling in vivo. Intriguingly, they are also opposite to, and are suppressed by, expression of the glycosyltransferase Fringe, which specifically modifies O-linked fucose. Thus, Notch-ligand interactions are dependent upon both the presence and the type of O-fucose glycans.  相似文献   

14.
O-Fucose has been identified on epidermal growth factor-like (EGF) repeats of Notch, and elongation of O-fucose has been implicated in the modulation of Notch signaling by Fringe. O-Fucose modifications are also predicted to occur on Notch ligands based on the presence of the C(2)XXGG(S/T)C(3) consensus site (where S/T is the modified amino acid) in a number of the EGF repeats of these proteins. Here we establish that both mammalian and Drosophila Notch ligands are modified with O-fucose glycans, demonstrating that the consensus site was useful for making predictions. The presence of O-fucose on Notch ligands raised the question of whether Fringe, an O-fucose specific beta 1,3-N-acetylglucosaminyltransferase, was capable of modifying O-fucose on the ligands. Indeed, O-fucose on mammalian Delta 1 and Jagged1 can be elongated with Manic Fringe in vivo, and Drosophila Delta and Serrate are substrates for Drosophila Fringe in vitro. These results raise the interesting possibility that alteration of O-fucose glycans on Notch ligands could play a role in the mechanism of Fringe action on Notch signaling. As an initial step to begin addressing the role of the O-fucose glycans on Notch ligands in Notch signaling, a number of mutations in predicted O-fucose glycosylation sites on Drosophila Serrate have been generated. Interestingly, analysis of these mutants has revealed that O-fucose modifications occur on some EGF repeats not predicted by the C(2)XXGGS/TC(3) consensus site. A revised, broad consensus site, C(2)X(3-5)S/TC(3) (where X(3-5) are any 3-5 amino acid residues), is proposed.  相似文献   

15.
蛋白O-连接岩藻糖基转移酶1 (Pofut1)基因缺失可导致Notch分子无法与配体结合并启动信号传递. 为研究Pofut1基因对哺乳动物胚胎干细胞(ESC)向神经分化的影响,利用Pofut1基因敲除的胚胎干细胞与野生型胚胎干细胞,经体外培养诱导拟胚体(EB)分化为神经细胞,计数分化为神经细胞的比例,采用细胞免疫组化染色和real-time PCR等方法,分析神经细胞特异性标志分子的表达. 结果显示,Pofut1基因缺失后,对EBC生长没有明显影响,分化过程中形成的拟胚体数量明显增多,分化的神经样细胞以及神经标志物分子的表达也明显多于对照组;Notch信号缺失对小鼠胚胎干细胞生长无明显影响,但可以促进ES细胞向神经细胞分化.  相似文献   

16.
The receptor protein Notch is inactive in neural precursor cells despite neighboring cells expressing ligands. We investigated specification of the R8 neural photoreceptor cells that initiate differentiation of each Drosophila ommatidium. The ligand Delta was required in R8 cells themselves, consistent with a lateral inhibitor function for Delta. By contrast, Delta expressed in cells adjacent to R8 could not activate Notch in R8 cells. The split mutation of Notch was found to activate signaling in R8 precursor cells, blocking differentiation and leading to altered development and neural cell death. split did not affect other, inductive functions of Notch. The Ile578-->Thr578 substitution responsible for the split mutation introduced a new site for O-fucosylation on EGF repeat 14 of the Notch extracellular domain. The O-fucose monosaccharide did not require extension by Fringe to confer the phenotype. Our results suggest functional differences between Notch in neural and non-neural cells. R8 precursor cells are protected from lateral inhibition by Delta. The protection is affected by modifications of a particular EGF repeat in the Notch extracellular domain. These results suggest that the pattern of neurogenesis is determined by blocking Notch signaling, as well as by activating Notch signaling.  相似文献   

17.
Fringe plays a key role in the specification of boundaries during development by modulating the ability of Notch ligands to activate Notch receptors. Fringe is a fucose-specific beta1,3-N-acetylglucosaminyltransferase that modifies O-fucose moieties on the epidermal growth factor-like (EGF) repeats of Notch. To investigate how the change in sugar structure caused by Fringe modulates Notch activity, we have analyzed the sites of O-fucose and Fringe modification on mouse Notch1. The extracellular domain of Notch1 has 36 tandem EGF repeats, many of which are predicted to be modified with O-fucose. We recently proposed a broadened consensus sequence for O-fucose, C(2)X(3-5)(S/T)C(3) (where C(2) and C(3) represent the second and third conserved cysteines), significantly expanding the potential number of modification sites on Notch. Here we demonstrate that sites predicted using this broader consensus sequence are modified with O-fucose on mouse Notch1, and we present evidence suggesting that the consensus can be further refined to C(2)X(4-5)(S/T)C(3). In particular, we demonstrate that EGF 12, a portion of the ligand-binding site, is modified with O-fucose and that this site is evolutionarily conserved. We also show that endogenous Fringe proteins in Chinese hamster ovary cells (Lunatic fringe and Radical fringe) as well as exogenous Manic fringe modify O-fucose on many but not all EGF repeats of mouse Notch1. These findings suggest that the Fringes show a preference for O-fucose on some EGF repeats relative to others. This specificity appears to be encoded within the amino acid sequence of the individual EGF repeats. Interestingly, our results reveal that Manic fringe modifies O-fucose both at the ligand-binding site (EGF 12) and in the Abruptex region. These findings provide insight into potential mechanisms by which Fringe action on Notch receptors may influence both the affinity of Notch-ligand binding and cell-autonomous inhibition of Notch signaling by ligand.  相似文献   

18.
The Notch family of signaling receptors plays key roles in determining cell fate and growth control. Recently, a number of laboratories have shown that O-fucose glycans on the epidermal growth factor (EGF)-like repeats of the Notch extracellular domain modulate Notch signaling. Fringe, a known modifier of Notch function, is an O-fucose specific beta1,3-N-acetylglucosaminyltransferase. The transfer of GlcNAc to O-fucose on Notch by fringe results in the potentiation of signaling by the Delta class of Notch ligands, but causes inhibition of signaling by the Serrate/Jagged class of Notch ligands. Interestingly, addition of a beta1,4 galactose by beta4GalT-1 to the GlcNAc added by fringe is required for Jagged1-induced Notch signaling to be inhibited in a co-culture assay. Thus, both fringe and beta4GalT-1 are modulators of Notch function. Several models have been proposed to explain how alterations in O-fucose glycans result in changes in Notch signaling, and these models are discussed.  相似文献   

19.
Notch signaling is a component of a wide variety of developmental processes in many organisms. Notch activity can be modulated by O-fucosylation (mediated by protein O-fucosyltransferase-1) and Fringe, a beta1,3-N-acetylglucosaminyltransferase that modifies O-fucose in the context of epidermal growth factor-like (EGF) repeats. Fringe was initially described in Drosophila, and three mammalian homologues have been identified, Manic fringe, Lunatic fringe, and Radical fringe. Here for the first time we have demonstrated that, similar to Manic and Lunatic, Radical fringe is also a fucose-specific beta1,3-N-acetylglucosaminyltransferase. The fact that three Fringe homologues exist in mammals raises the question of whether and how these enzymes differ. Although Notch contains numerous EGF repeats that are predicted to be modified by O-fucose, previous studies in our laboratory have demonstrated that not all O-fucosylated EGF repeats of Notch are further modified by Fringe, suggesting that the Fringe enzymes can differentiate between them. In this work, we have sought to identify specificity determinants for the recognition of an individual O-fucosylated EGF repeat by the Fringe enzymes. We have also sought to determine differences in the biochemical behavior of the Fringes with regard to their in vitro enzymatic activities. Using both in vivo and in vitro experiments, we have found two amino acids that appear to be important for the recognition of an O-fucosylated EGF repeat by all three mammalian Fringes. These amino acids provide an initial step toward defining sequences that will allow us to predict which O-fucosylated EGF repeats are modified by the Fringes.  相似文献   

20.
The EGF-CFC gene cripto governs anterior-posterior (A-P) axis specification in the vertebrate embryo. Existing models suggest that Cripto facilitates binding of Nodal to an ActRII-activin-like kinase (ALK) 4 receptor complex. Cripto also has a crucial function in cellular transformation that is independent of Nodal and ALK4. However, how ALK4-independent Cripto pathways function in vivo has remained unclear. We have generated cripto mutants carrying the amino acid substitution F78A, which blocks the Nodal-ALK4-Smad2 signaling both in embryonic stem cells and cell-based assays. In cripto(F78A/F78A) mouse embryos, Nodal fails to expand its own expression domain and that of cripto, indicating that F78 is essential in vivo to stimulate Smad-dependent Nodal autoinduction. In sharp contrast to cripto-null mutants, cripto(F78A/F78A) embryos establish an A-P axis and initiate gastrulation movements. Our findings provide in vivo evidence that Cripto is required in the Nodal-Smad2 pathway to activate an autoinductive feedback loop, whereas it can promote A-P axis formation and initiate gastrulation movements independently of its stimulatory effect on the canonical Nodal-ALK4-Smad2 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号