首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Beef-heart mitochondrial F1 ATPase can be induced to synthesize ATP from ADP and inorganic phosphate in 30% Me2SO. We have analyzed the adenine nucleotide content of the F1 ATPase during the time-course of ATP synthesis, in the absence of added medium nucleotide, and in the absence and presence of 10 mM inorganic phosphate. The enzyme used in these investigations was either pretreated or not pretreated with ATP to produce F1 with a defined nucleotide content and catalytic or noncatalytic nucleotide-binding site occupancy. We show that the mechanism of ATP synthesis in Me2SO involves (i) an initial rapid loss of bound nucleotide(s), this process being strongly influenced by inorganic phosphate; (ii) a rebinding of lost nucleotide; and (iii) synthesis of ATP from bound ADP and inorganic phosphate.  相似文献   

2.
Mitochondrial encephalomyopathy and lactic acidosis with strokelike episodes (MELAS) is a severe young onset stroke disorder without effective treatment. We have identified a MELAS patient harboring a 13528A-->G mitochondrial DNA (mtDNA) mutation in the Complex I ND5 gene. This mutation was homoplasmic in mtDNA from patient muscle and nearly homoplasmic (99.9%) in blood. Fibroblasts from the patient exhibited decreased mitochondrial membrane potential (Deltapsim) and increased lactate production, consistent with impaired mitochondrial function. Transfer of patient mtDNA to a new nuclear background using transmitochondrial cybrid fusions confirmed the pathogenicity of the 13528A-->G mutation; Complex I-linked respiration and Deltapsim were both significantly reduced in patient mtDNA cybrids compared with controls. Inhibition of the adenine nucleotide translocase or the F1F0-ATPase with bongkrekic acid or oligomycin caused a loss of potential in patient mtDNA cybrid mitochondria, indicating a requirement for glycolytically generated ATP to maintain Deltapsim. This was confirmed by inhibition of glycolysis with 2-deoxy-D-glucose, which caused depletion of ATP and mitochondrial depolarization in patient mtDNA cybrids. These data suggest that in response to impaired respiration due to the mtDNA mutation, mitochondria consume ATP to maintain Deltapsim, representing a potential pathophysiological mechanism in human mitochondrial disease.  相似文献   

3.
S Beharry  P D Bragg 《FEBS letters》1991,291(2):282-284
Beef-heart mitochondrial F1-ATPase contained 5 mol of inorganic phosphate bound per mol of F1, following pretreatment with ATP. A portion of the phosphate, bound most likely at a catalytic site, reacted in dimethylsulfoxide with endogenous adenine nucleotide to form ATP.  相似文献   

4.
The respiratory metabolism of Schizosaccharomyces pombe 972h(-), a fission, haplontic, "petite negative" yeast, was studied. Glucose and glycerol are good growth substrates and are oxidized under appropriate conditions. l-Lactate, ethanol, malate, and succinate are oxidized but are poor substrates for growth. d-Lactate and pyruvate are neither oxidized nor used for growth. Limited growth was observed under anaerobic conditions. The addition of 0.3% KNO(3) to a rich medium relieves the oxygen requirement. A continuous increase of cell respiration during growth on repressive concentration of glucose was observed, suggesting the presence of glucose repression of respiration. Reduced nicotinamide adenine dinucleotide (NADH), succinate, alpha-glycerophosphate, and ascorbate plus tetramethyl-p-phenylenediamine are oxidized by a mitochondrial fraction. NADH and succinate oxidations are inhibited by antimycin A and NaCN but not by rotenone, suggesting the absence of the phosphorylation site I and the presence of sites II and III. The effects of several mitochondrial inhibitors on growth and respiration indicate that the requirement of an oxidant for growth is related neither to the functioning of the respiratory electron transport chain nor to the formation of respiratory energy. The previously suggested correlations between the nonviability of vegetative "petites" mutants, the absence of repression of respiration by glucose, and the incapacity to grow under anaerobic conditions are thus not strictly valid for S. pombe.  相似文献   

5.
Isolated pig heart mitochondria were found to form phosphocreatine continuously at the rate of 12.5 +/- 1.8 nmol per min per mg of the mitochondrial protein in the respiration medium without externally added adenine nucleotides, and its formation rate showed a concentration dependency with respect to creatine and phosphate. The synthesis of phosphocreatine was completely inhibited by antimycin, FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone), and atractyloside. However, oligomycin had no effect on the rate of phosphocreatine formation. These results are discussed in terms of a model that heart mitochondrial creatine kinase is functionally coupled to the oxidative phosphorylating system via the action of the adenine nucleotide translocase.  相似文献   

6.
Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.  相似文献   

7.
The regulation of oxidative phosphorylation was studied with digitonin-treated epididymal bull spermatozoa in which mitochondria are directly accessible to low molecular compounds in the extracellular medium. Due to the high extramitochondrial ATPase activity in this cell preparation, it was possible to stimulate respiration to a small extent only by added hexokinase in the presence of glucose and adenine nucleotides. Added pyruvate kinase plus phosphoenol pyruvate, however, strongly suppressed the respiration. Under these conditions, the respiration was found to depend on the extramitochondrial [ATP]/[ADP] ratio in the range of 1-100. The contribution of the adenine nucleotide translocator to this dependence was determined by titration with the irreversible inhibitor carboxyatractyloside in the presence of ADP. Using lactate plus malate as substrate, the active state respiration was controlled to about 30% by the translocator, whereas 12 and 4% were determined in the presence of L-glycerol-3-phosphate and malate alone, respectively. In order to compare the results with those for intact cells, the adenine nucleotide patterns were determined in intact and digitonin-treated spermatozoa under conditions of controlled respiration in the presence of vanadate and carboxyatractyloside, respectively. About 21% of total cellular adenine nucleotides were found in digitonin-treated cells representing the mitochondrial compartment. While allowing for the intramitochondrial amount of adenine nucleotides, the cytosolic [ATP]/[ADP] ratio was estimated to be 6-times higher than the mitochondrial ratio in intact cells. It is concluded from the data presented that the principal mechanism by which oxidative phosphorylation in sperm mitochondria is regulated via the extramitochondrial [ATP]/[ADP] ratio is the same as that demonstrated for other isolated mitochondria.  相似文献   

8.
1. Investigation of a number of reactions involving both internal and externally added adenine nucleotides of isolated liver mitochondria has revealed that atractylate and oligomycin differ markedly in the site of their inhibitory action. 2. Both atractylate and oligomycin inhibited the respiratory-chain-level phosphorylation of added ADP. Neither compound inhibited the substrate-level phosphorylation of internal (endogenous) ADP or the respiration-dependent accumulation of bivalent metal ions (Ca2+, Sr2+ or Mn2+). 3. Atractylate, but not oligomycin, inhibited the substrate-level phosphorylation of externally added ADP, the ATP- and carnitine-dependent reduction of nicotinamide nucleotide by palmitate and the ATP-induced activation of succinate oxidation. 4. Oligomycin, but not atractylate, inhibited the respiratory-chain-linked phosphorylation of internal ADP, and the dephosphorylation of internal ATP that occurred on the addition of antimycin. 5. The enhancement of arsenate-stimulated respiration by ADP was prevented by atractylate added either before or after the ADP. Oligomycin abolished both the arsenate and ADP stimulation. 6. It is suggested that atractylate prevents the passage of adenine nucleotides across the mitochondrial membrane, whereas oligomycin interferes with the formation of a `high-energy' phosphorylated intermediate.  相似文献   

9.
Cooperative interactions between nucleotide binding sites on beef heart mitochondrial F1-ATPase have been studied by measuring substrate-promoted release of 5'adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) from a single high affinity site. The site is initially loaded by incubating F1 with an equimolar amount of the nonhydrolyzable ATP analog. When unbound [3H]AMP-PNP is removed and the complex diluted to a concentration below the Kd, release of ligand shows an apparent absolute requirement for medium ADP. Release is biphasic with the extent of release during the initial rapid phase dependent on the concentration of medium ADP. Although phosphate alone has no effect, it enhances the rapid phase of ADP-promoted release over 2-fold with a half-maximal effect at 60 micrometers P1. The binding of efrapeptin (A23871) to the F1.AMP-PNP complex completely prevents ADP-promoted dissociation. Although AMP-PNP release also occurs in the presence of medium ATP, the F1.AMP-PNP complex does not dissociate if an ATP-regenerating system of sufficient capacity to prevent accumulation of medium ADP is added. Consistent with an inability of nucleoside triphosphate to promote release is the failure of medium, nonradioactive AMP-PNP to affect retention of the 3H-labeled ligand. The stability of F1.AMP-PNP complex in the absence of medium nucleotide and the highly specific ability of ADP plus P1 to promote rapid release of the ATP analog are interpreted as support for an ATP synthesis mechanism that requires substrate binding at one catalytic site for product release from an adjacent interacting site.  相似文献   

10.
Net adenine nucleotide transport into and out of the mitochondrial matrix via the ATP-Mg/Pi carrier is activated by micromolar calcium concentrations in rat liver mitochondria. The purpose of this study was to induce net adenine nucleotide transport by varying the substrate supply and/or extramitochondrial ATP consumption in order to evaluate the effect of the mitochondrial adenine nucleotide pool size on intramitochondrial adenine nucleotide patterns under phosphorylating conditions. Above 12 nmol/mg protein, intramitochondrial ATP/ADP increased with an increase in the mitochondrial adenine nucleotide pool. The relationship between the rate of respiration and the mitochondrial ADP concentration did not depend on the mitochondrial adenine nucleotide pool size up to 9 nmol ADP/mg mitochondrial protein. The results are compatible with the notion that net uptake of adenine nucleotides at low energy states supports intramitochondrial ATP consuming processes and energized mitochondria may lose adenine nucleotides. The decrease of the mitochondrial adenine nucleotide content below 9 nmol/mg protein inhibits oxidative phosphorylation. In particular, this could be the case within the postischemic phase which is characterized by low cytosolic adenine nucleotide concentrations and energized mitochondria.  相似文献   

11.
1. Parameters of ATP uptake by fully functional Saccharomyces cerevisiae mitochondria, including kinetic constants, binding constants and sensitivity to atractylate, closely resemble those of mammalian mitochondria. Scatchard plots of atractylate-sensitive adenine nucleotide binding indicate two distinct sites of high affinity (binding constant, K(D)'=1mum), and low affinity (binding constant, K(D)'=20mum) in the ratio 1:3. Uptake has high Arrhenius activation energies (+35 and +57kJ/mol), above and below a transition temperature of 11 degrees C. Atractylate-insensitive ATP uptake is apparently not saturable and has a low Arrhenius activation energy (6kJ/mol), suggesting a non-specific binding process. 2. Kinetic and binding constants for ATP uptake are not significantly changed in catabolite-repressed or anaerobic mitochondrial structures. 3. Inhibition of the mitochondrial protein-synthesizing system by growth of cells in the presence of erythromycin, or loss of mitochondrial DNA by mutation profoundly alters the adenine nucleotide transporter. ATP uptake becomes completely insensitive to atractylate, and the high-affinity binding site is lost. However, the adenine nucleotide transporter does not appear to be totally eliminated, as a moderate amount of saturable low-affinity ATP binding remains. 4. It is concluded that products of the mitochondrial protein-synthesizing system, probably coded by mitochondrial DNA, are required for the normal function of the adenine nucleotide transporter.  相似文献   

12.
A probability approach was used to describe mitochondrial respiration in the presence of substrates, ATP, ADP, Cr and PCr. Respiring mitochondria were considered as a three-component system, including: 1) oxidative phosphorylation reactions which provide stable ATP and ADP concentrations in the mitochondrial matrix; 2) adenine nucleotide translocase provides exchange transfer of matrix adenine nucleotides for those from outside, supplied from medium and by creatine kinase; 3) creatine kinase, starting these reactions when activated by the substrates from medium. The specific feature of this system is close proximity of creatine kinase and translocase molecules. This results in high probability of direct activations of translocase by creatine kinase-derived ADP or ATP without their leak into the medium. In turn, the activated translocase with the same high probability directly provides creatine kinase with matrix-derived ATP or ADP. The catalytic complexes of creatine kinase formed with ATP from matrix together with those formed from medium ATP provide activation of the forward creatine kinase reaction coupled to translocase activation. Simultaneously the catalytic complexes of creatine kinase formed with ADP from matrix together with those formed from medium ADP provide activation of the reverse creatine kinase reaction coupled to translocase activation. The considered probabilities were arranged into a mathermatical model. The model satisfactorily simulates the available experimental data by several groups of investigators. The results allow to consider the observed kinetic and thermodynamic iriegularities in behavior of structurally bound creatine kinase as a direct consequence of its tight coupling to translocase.  相似文献   

13.
The dissociation of mitochondrial F1-ATPase with 3 M LiCl at 0 degrees C, followed by reconstitution, has been analysed. FPLC over a gel filtration column in the dissociation buffer revealed the presence of two protein moieties, an alpha 3 gamma delta epsilon complex and single beta-subunits. When the dissociation and chromatography is performed at pH 6.2, the former protein moiety still contains some adenine nucleotides. Reconstitution of the dissociated complex is not possible any more after FPLC, probably due to the loss of residual adenine nucleotides. After a single column centrifugation step one nucleotide per F1 still remains bound. For reconstitution, additional ATP, or a suitable analog, is required. 2-Azido-ATP, but not 8-azido-ATP or ITP, can replace ATP during the reconstitution. F1, reconstituted in the presence of 2-azido-ATP, contains three tightly bound nucleotides, similar to freshly isolated F1, of which in this case one is an adenine nucleotide and two are azido-adenine nucleotides. One of the latter can be rapidly exchanged and is bound to a catalytic site. Covalent binding (at a beta-subunit) of the other tightly bound 2-azido-ATP by ultraviolet illumination does not result in inhibition of the enzyme. Digestion of F1 with trypsin, followed by HPLC, showed that the label is not bound to the fragment containing Tyr-368, nor to the fragment containing Tyr-345. This result was confirmed by CNBr digestion, followed by SDS-urea PAGE. We conclude that during dissociation of F1 one tightly bound nucleotide (ADP) remains bound at an alpha/beta interface site and that for reconstitution binding of ATP to a (non-catalytic) beta-site is required. The conformation of this site differs from that of the two catalytic beta-sites.  相似文献   

14.
J. &#x;ubík  J. Kolarov  L. Kov 《BBA》1974,357(3):453-456
1. Growth on glucose of cytoplasmic respiration-deficient (ρ) mutants isolated from five strains of Saccharomyces cerevisiae and one strain of Saccharomyces carlsbergensis were arrested by the inhibitor of mitochondrial adenine nucleotide translocation, bongkrekic acid. This indicates that the mitochondrial adenine nucleotide translocation system is preserved and necessary for growth in a number of independent ρ mutants.

2. Growth of three “petite-negative” yeast species was arrested by a combined inhibition of respiration by antimycin A and of adenine nucleotide translocation by bongkrekic acid. Thus, the arrest of growth upon inhibition of adenine nucleotide translocation in non-respiring cells is not specific for ρ mutants and may be a general characteristic of eucaryotic cells.  相似文献   


15.
Beef heart mitochondrial F1 contains a total of six adenine nucleotide-binding sites including at least two different types of sites. Three "exchangeable" sites exchange rapidly during hydrolysis of MgATP, whereas three "nonexchangeable" sites do not (Cross, R. L. and Nalin, C. M. (1982) J. Biol. Chem. 257, 2874-2881). When F1 that has been stored as a suspension in (NH4)2SO4/ATP/EDTA/sucrose/Tris, pH 8.0, is pelleted, rinsed with (NH4)2SO4, dissolved, and desalted, it retains three bound adenine nucleotides. We find that two of these endogenous nucleotides are bound at nonexchangeable sites and one at an exchangeable site. The vacant nonexchangeable site is highly specific for adenine nucleotide and is rapidly filled by ADP upon addition of ADP or during ATP hydrolysis. ADP bound at this site can be removed by reprecipitating the enzyme with (NH4)2SO4. The single nucleotide retained by desalted F1 at an exchangeable site is displaced during hydrolysis of ATP, GTP, or ITP. The binding of PPi at two sites on the enzyme also promotes its dissociation. Neither procedure affects retention of nucleotide at the nonexchangeable sites. These observations, combined with the finding that PPi is much more easily removed from exchangeable sites than ADP, have led to the development of a procedure for preparing F1 with uniform and well-defined nucleotide site occupancy. This involves sequential exposure to MgATP, PPi, and high concentrations of Pi. Unbound ligand is removed between each step. The resulting enzyme, F1[3,0], has three occupied nonexchangeable sites and three vacant exchangeable sites. Evidence that nonexchangeable and exchangeable sites represent noncatalytic and catalytic sites, respectively, suggest that this form of the enzyme will prove useful in numerous applications, including transient kinetic measurements and affinity labeling of active site residues.  相似文献   

16.
Rat liver mitochondria were incubated at 30 degrees C with 4 mM ATP in a medium similar in electrolyte composition to that of hepatic cytosol. Under these conditions, a net increase in mitochondrial adenine nucleotides was observed that was dependent on the concentration of free Ca2+ [( Ca2+]) in the incubation medium. At 0.2 microM [Ca2+] or less, there was no demonstrable uptake of adenine nucleotides; at 0.4 microM [Ca2+], or greater, net uptake occurred. The calcium-dependent accumulation of nucleotides by mitochondria required Mg2+ in the incubation medium and was insensitive to carboxyatractyloside. The uptake of adenine nucleotides was enhanced by the addition of antimycin A or antimycin A together with oligomycin. Accumulation of nucleotides appeared to be associated with a small increase in mean mitochondrial volume, but the membrane potential was not affected. No uptake or loss of NAD-NADH by mitochondria was detected. Ruthenium red failed to inhibit the calcium-dependent uptake of adenine nucleotides by the mitochondria, indicating that stimulation of this process by Ca2+ does not involve transport of the cation into mitochondria by the Ca2+ uniporter. Because glucagon acts to elevate cytosolic [Ca2+] from approximately 0.2 microM to 0.6 microM, the same range affecting nucleotide uptake, it is proposed that the increase in mitochondrial adenine nucleotides that follows treatment with glucagon is mediated by the rise in cytosolic [Ca2+] produced by the hormone. This hypothesis was supported by the observation that epinephrine and A23187, agents that raise cytosolic [Ca2+], increased the content of mitochondrial adenine nucleotides in isolated hepatocytes. Furthermore, cells, incubated under calcium-depleting conditions, had a diminished response to glucagon.  相似文献   

17.
Incubation of [gamma-32P]ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the [gamma-32P]ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of [gamma-32P]ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.  相似文献   

18.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

19.
In conditions of glucose starvation, the maximum velocity of the mediated transport of nonmetabolized and metabolized amino acids, uridine, adenosine, and sucrose across the plasma membrane is stimulated by a factor of two by the addition of 1 mM adenosine 3':5'-monophosphate to Schizosaccharomyces pombe 972h- wild strain, to the glucose-super-repressed and derepressed mutants COB5 and COB6, and to Saccharomyces cerevisiae strain IL 216-IA. The mediated uptake of 2-D-deoxyglucose and the apparently nonmediated uptake of guanosine are not stimulated by the cyclic nucleotide. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate is also efficient, whereas theophylline, guanosine 3':5'-monophosphate, 5'-AMP, ATP, and adenosine are ineffective. The cellular ATP content of glycerol-grown S. pombe COB5 is about 10 nmol per mg of protein and is not decreased by further incubation in the starvation medium. The addition of 100 mM glucose markedly enhances transport without any increase of the cellular ATP content. The addition of antimycin A or Dio-9 decreases markedly both cellular ATP content and transport. The addition of 2.5 mM glucose to antimycin A-containing medium restores both transport is not necessarily of mitochondrial origin. The uptake of 2-D-deoxyglucose is unaffected by the respiratory inhibitors. Stimulation of uptake by cyclic adenosine 3':5'-monophosphate occurs only in glucose-deprived cells. The addition of 10 mM glucose elicits the disappearance of the stimulation and prevents the 30% decrease of the cellular adenosine 3':5'-monophosphate content produced by glucose starvation. Adenosine 3':5'-'monophosphate does not enhance the steady state ATP level but requires cellular ATP produced either by endogenous respiration or, in the absence of respiration blocked by antimycin A, by further addition of 2.5 mM glucose. Stimulation of active uptake by adenosine 3':5'-monophosphate does not require protein synthesis because the addition of cycloheximide or anisomycin does not prevent the stimulation of L-leucine uptake. In the absence of respiration, Dio-9, and ATPase inhibitor, suppresses instantaneously the cellular ejection of protons as well as the uptake of uridine and amino acids. It abolishes also the adenosine 3':5'-monophosphate-stimulated transport. In the presence of antimycin A, specific mitochondrial ATPase inhibitors such as venruricidin A do not inhibit metabolite uptakes and their stimulation by adenosine 3':5'-monophosphate. These results suggest that in these conditions, the target of Dio-9 is not the mitochondrial ATPase but a plasma membrane proton-translocating function generating an electrochemical gradient required for active transport. That adenosine 3':5'-monophosphate enhances the Dio-9-sensitive proton extrusion supports the view that the cyclic nucleotide might modulate the plasma membrane ATPase.  相似文献   

20.
The effect of guanidinium chloride (GdnHCl) on the ATPase activity and structure of soluble mitochondrial F1 was studied. At high ATP concentrations, hydrolysis is carried by the three catalytic sites of F1; this reaction was strongly inhibited by GdnHCl concentrations of <50 mM. With substoichiometric ATP concentrations, hydrolysis is catalyzed exclusively by the site with the highest affinity. Under these conditions, ATP binding and hydrolysis took place with GdnHCl concentrations of >100 mM; albeit at the latter concentration, the rate of hydrolysis of bound ATP was lower. Similar results were obtained with urea, although nearly 10-fold higher concentrations were required to inhibit multisite hydrolysis. GdnHCl inhibited multisite ATPase activity by diminishing the V(max) of the reaction without significant alterations of the Km for MgATP. GdnHCl prevented the effect of excess ATP on hydrolysis of ATP that was already bound to the high-affinity catalytic site. With and without 100 mM GdnHCl and 100 microM [3H]ATP in the medium, F1 bound 1.6 and 2 adenine nucleotides per F1, respectively. The effect of GdnHCl on some structural features of F1 was also examined. GdnHCl at concentrations that inhibit multisite ATP hydrolysis did not affect the exposure of the cysteines of F1, nor its intrinsic fluorescence. With 100 mM GdnHCl, a concentration at which unisite ATP hydrolysis was still observed, 0.7 cysteine per F1 became solvent-exposed and small changes in its intrinsic fluorescence of F1 were detected. GdnHCl concentrations on the order of 500 mM were required to induce important decreases in intrinsic fluorescence. These changes accompanied inhibition of unisite ATP hydrolysis. The overall data indicate that increasing concentrations of GdnHCl bring about distinct and sequential alterations in the function and structure of F1. With respect to the function of F1, the results show that at low GdnHCl concentrations, only the high-affinity site expresses catalytic activity, and that inhibition of multisite catalysis is due to alterations in the transmission of events between catalytic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号