首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Profiles of pH dependence and activities of live proteolytic enzymes, amino- and carboxypeptidase and endopeptidases active at pH 3.8, 5.4 and 7.5, with casein as substrate, were determined in crude extracts from the various organs of corn seedlings during germination and early development (30°C, dark, 8 d). With respect to the endopeptidases, caseolytic activities at pH 3.8, 5.4 and 7.5 in extracts from endosperm increased concurrently with loss of endosperm N during germination; however, the relative amounts of the pH 7.5 activity were very small. In scutellum extracts, caseolytic activities at both pH 5.4 and 7.5 increased during the initial stages of development but only the increase at pH 5.4 was concurrent with loss of scutellar N. In shoot extracts, caseolytic activities at pH 5.4 and 7.5 were very low and remained relatively constant. There was a progressive increase in shoot N with time. In root extracts, caseolytic activities at pH 5.4 and 7.5 were higher (3-fold) than in shoot extracts. The activity at pH 5.4 remained constant while the activity at pH 7.5 increased during germination. The rate of accumulation of N by the root was low after day 5. The pattern and ratio but not the amounts of the pH 5.4 and 7.5 caseolytic activities of the root were similar to those observed in senescing leaves of field-grown corn. Addition of mercaptoethanol increased (several-fold) the caseolytic activities at pH 3.8 and 5.4, especially the latter, but not the pH 7.5 activity in endosperm extracts and increased the pH 5.4 activity in extracts from scutellum (30%) and roots (30%) while the effect in shoot extracts was negligible. Carboxypeptidase activity was relatively low in young tissue (root tip, 3-d-old shoots) and increased with development of the various organs except the roots (whole) where the activity remained relatively constant. The increases in carboxypeptidase activities were concurrent with decreases in N from endosperm and scutellum; this result indicates that this enzyme in these tissues may be involved (cooperatively with endopeptidases) in the mobilization of reserve protein.Of all the enzymes tested, only carboxypeptidase activity was markedly (in excess of 50%) inhibited by phenylmethylsulfonylfluoride. Only aminopeptidase activity was found in appreciable amounts in endosperm and scutellum of dry kernels. Aminopeptidase activity was highest in organs with high metabolic activity (scutella, shoot, root tips) and decreased in plant parts undergoing rapid loss of nitrogen (endosperm, senescing leaves).Abbreviations AP aminopeptidase - CA caseolytic activity - CP carboxypeptidase - ME mercaptoethanol  相似文献   

2.
Samac D  Storey R 《Plant physiology》1981,68(6):1339-1344
Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling.  相似文献   

3.
The autodigestive proteolytic activity of extracts of cotyledons of mung beans (Phaseolus aureus Roxb.) increased 4- to 5-fold during germination. A similar increase was found in the ability of these extracts to digest added casein or mung bean globulins. The increase occurred after a 2-day lag during the next 2 to 3 days of germination and coincided with the period of rapid storage protein breakdown. To understand which enzyme(s) may be responsible for this increase in proteolytic activity, the hydrolytic activity of cotyledon extracts toward a number of synthetic substrates and proteins was measured. Germination was accompanied by a marked decline in leucine aminopeptidase, while carboxypeptidase increased about 50%. There were no dramatic changes in either α-mannosidase or N-acetyl-β-glucosaminidase, enzymes which may be involved in the metabolism of the carbohydrate moieties of the reserve glycoproteins. The increase in general proteolytic activity was closely paralleled by a 10-fold increase in endopeptidase activity. This activity was inhibited by sulfhydryl reagents such as N-ethylmaleimide. Studies with inhibitors of proteolytic enzymes showed that reagents which blocked sulfhydryl groups also inhibited the rise in general proteolytic activity. Our results suggest that the appearance of a sulfhydryl-type endopeptidase activity is a necessary prerequisite for the rapid metabolism of the reserve proteins which accompanies germination.  相似文献   

4.
Tomato seedlings were grown at constant temperatures of 25°and 15° C. in a 12-hour day at light intensities of 1,600,800, and 400 f.c. The rate of increase in size of the shootapex and the rates of formation and growth of leaf primordiaduring the vegetative phase were followed by dissecting samplesfrom the time of cotyledon emergence onwards. The rate of enlargement of the shoot apex increased with lightintensity, but apical enlargement was delayed at the highertemperature, the delay being longer the lower the light intensity.The rates of leaf formation and leaf growth increased with bothtemperature and light intensity. Temperature had a larger effecton leaf growth than on leaf formation. More leaves were formedbefore flowering at 25° C. than at 15° C., the increasein leaf number being greater the lower the light intensity. It is suggested that the delay in the enlargement of the apexat high temperature can be explained in terms of competitionfor assimilate, the competitive potential of the expanding leafprimordia exceeding that of the apex at higher temperatures.  相似文献   

5.
An investigation was made of the expansion of the leaf surfaceof cucumber at temperatures of 12°, 18°, 24°, and30°C. with two levels of visible radiation (40 and 80 cal.cm.–2 day–1). The relative rate of expansion ofthe leaf surface increased with temperature up to 24° butwas lower at 30° than at 24°. It was slightly greaterwith the higher than the lower level of radiation at the lowertemperatures only. This rate was the resultant of the rate ofunfolding of new leaves and the rate of expansion of the componentleaves. The rate of leaf production increased with increasingtemperature up to 24° and was constant there-after, butleaves unfolded from the terminal bud more rapidly with increasein temperature over the entire range. The rate of expansionof individual leaves was greatest at 24°, being less atboth lower and higher temperatures. Differences in this ratebetween temperatures increased in the order: cotyledon, leaf1, leaf 2. Leaf production and unfolding was greater with thehigher level of radiation but the expansion of individual leaveswas not influenced. These results suggested the following interpretation of theexpansion the leaf surface. Its potential rate is set by therate of unfolding of leaves from the terminal bud, which dependsmainly on the temperature and the rate of assimilation by theupper leaves and the terminal bud, the demand for assimilateexceeding the supply in this region. The demand for mineralsubstrates by the terminal bud is low and not influenced bya wide variation in potential supply. After unfolding from theterminal bud, the leaf provides most of its own supply of carbohydrateby assimilation and this can be met at a low level of radiation.Surplus assimilate is diverted to the roots and stems whichrespond much more to increased radiation than does the leafsurface. The demand for mineral substrates by expanding leaves,however, is high—the greater the number expanding at anytime the more likely is the demand by any one leaf to exceedthe supply. This leads to a reduction in the number of celldivision and, consequently, a reduced rate of expansion anda smaller leaf. The optimum level of any environmental factoris that at which the most effective compromise between theseconflicting processes is reached.  相似文献   

6.
A strong fibrin-specific fibrinolytic enzyme was purified from the cell-free spent culture broth of a thermophilic organism, Streptomyces megasporus SD5. The strain could produce 150 mg crude protein per litre of spent broth, with a specific activity of 80 IU (Plough units) per milligram, within 18 h of incubation at 55 °C in glucose yeast/extract/peptone (GYP) medium, pH 8.0. For production of the enzyme, the strain could utilize different carbon and nitrogen sources with a C:N ratio of ∼ 1:2. The enzyme was stable at a broad range of pH ranging from 5 to 9, and highly thermostable with 50% activity after storage at 60 °C for 6 months. The enzyme belonged to the serine endopeptidase group. In vitro clot lysis revealed that the enzyme was active at 37 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.  相似文献   

8.
In the search for early-detectable selection criteria for growthat low temperature conditions in tomato, first the initiationand growth of individual leaves was analysed. Scanning electronmicroscopy revealed that the first four primordia had alreadydeveloped during the germination period at 25°C. The primordiumof the fifth leaf, however, was initiated after the transferof seedlings to the experimental conditions. The increase inlength of the first three leaves, and to a lesser extent ofthe fourth leaf, was considerably smaller in comparison withthat of later formed leaves. Moreover, the morphology of thefirst three to four leaves was deviant, whereas the others showedthe normal compound leaf architecture. All these results indicatedthat the fifth leaf was the earliest formed leaf with growthcharacteristics that might reflect the growth potential of thewhole plant. Development of the fifth leaf was tested as a marker for wholeplant growth. At three temperature, 18, 15 and 12°C, growthresponses of the fifth leaf were similar to that of whole plantsin four tomato genotypes: Line A, Line B, Premier and MXXIV-13.Significant differences in relative growth rate of dry weightof whole plants and fifth leaves (RGRW)and of leaf area of thefifth leaves (RGRLA between two fast growing and two slow growinggenotypes were found. No genotype by temperature interactionfor RGRW and RGRLA was found, indicating that the effect oftemperature decrease was similar for the four genotypes. The structure of the mature fifth leaf of one fast and one slowgrowing genotype, Line A and MXXIV-13, was analysed. For bothgenotypes, leaves were small and thick at low temperature, 12°C.The total number of epidermis and palisade parenchyma cellsper leaf was smaller but the size of the cells developed at12°C was larger than at 18°C. Consequently, the slowgrowth at 12°C was due to a low rate of cell division. Atboth temperatures, the fifth leaf to MXXIV-13 was smaller comparedto that of line A. Since the size of the cells were similar,the smaller leaf size was due to lower number of leaf cells. The results confirm the suitability of the growth, especiallyexpressed as RGRLA , of the fifth leaf as a nondestructive marketfor vegetative development of tomato at low temperature. Growthdifferences between genotypes were mainly reflected by differencesin cell number of leaves, which might be correlated with geneticallydetermined differences in cell number of leaf primordia.Copyright1993, 1999 Academic Press Lycopersicon esculentum Mill. genotypes, plant growth, selection criteria, low temperature, leaf initiation, leaf development, RGR, leaf structure, cell expansion  相似文献   

9.
Feller  Urs 《Plant & cell physiology》1979,20(8):1577-1583
Nitrogen mobilization and the pattern of proteolytic enzymeswere investigated in leaves and glumes of field-grown winterwheat (Triticum aestivum L.) during maturation. Source/sinkrelations were changed by removal of the ear, the flag leafor the lower leaves shortly after anthesis. Removal of the earwas most effective, resulting in delayed senescence of the flagleaf with the chlorophyll, aminopeptidase and carboxypeptidaseactivities remaining high in contrast to the control, whereasneutral endopeptidase activity increased more slowly. No majorchanges were observed in the second leaf from the top in plantswith either ears or flag leaves removed. Nitrogen mobilizationand proteolytic activities in glumes and the remaining leaveswere influenced only slightly by leaf removal. In earless plants,nitrogen was transported from the second leaf into the leafsheath and stem, but in the flag leaf the total reduced nitrogenremained high and free amino groups increased. The increase in endopeptidase activity was influenced by thesource/sink relations. However, the accumulation of amino groupsand the increasing endopeptidase activity in the flag leaf ofearless plants suggest that the nitrogen sink capacity did notgreatly control protein degradation; it remains to be seen whetherphytohormones, accumulated amino acids or other factors delayedthe increase in endopeptidase activity. (Received September 3, 1979; )  相似文献   

10.
Hawthorn (Crataegus spp.) is an important plant with a long history as an ornamental and a source of medicine. A protocol is outlined for adventitious bud regeneration from leaf and cotyledon explants of Chinese hawthorn (C. pinnatifida Bge. var. major N.E.Br.). Adventitious buds were induced on both the leaves of sprouting winter buds and the leaves of in vitro plants, but the percentage of bud regeneration from leaves of in vitro plants was very low—less than 6%. On N6 medium supplemented with 31.08 μM BA and 9.67 μM NAA, the percentages of bud regeneration from leaves of sprouting winter buds of cultivars “Liaohong” and “Qiujinxing” were 31.4% and 17.6%, respectively. The regeneration abilities of three kinds of cotyledon explants, immature cotyledon, mature cotyledon, and cotyledon leaf, were compared. The percentage of bud regeneration from cotyledon leaves was higher. On MS media supplemented with 4.44 μM BA and 4.54–9.08 μM TDZ, the percentages of bud regeneration from cotyledon leaves of cultivars “Qiujinxing” and “Xiajinxing” were 27.7 ± 7.8% and 20.1 ± 4.7%, respectively, and the numbers of buds per explant were 5.9 ± 1.6 and 3.2 ± 0.7, respectively. On B5 medium supplemented with 2.22 μM BA, 2.32 μM Kn, and 0.57 μM IAA, adventitious buds grew quickly and 80–100% of buds developed into shoots. The shoots rooted successfully with the two-step rooting method. Ninety days after transplantation, more than 80% plants were survived. This system of adventitious bud regeneration from leaf and cotyledon explants could be useful for the genetic transformation and polyploidization of Chinese hawthorn.  相似文献   

11.
Phosphoenolpyruvate carboxylase (PEPC) was isolated from leavesof Mesembryanthemum crystallinum, which performed Crassulaceanacid metabolism. PEPC was much more stable when extracted from expanded thanfrom expanding leaves. The inactivation of PEPC in desaltedextracts from expanding leaves was much faster at 25 than at0 °C, was stimulated by raising Mg2+ from 0.1 to 3.0 mM,and was reduced by bovine serum albumin. The same type of inactivationwas found after mixing extracts from the two types of leaves,and the decrease in PEPC activity then also included inactivationof the ’stable’ PEPC from the expanded leaves. Afterelution from DEAE-cellulose, PEPC from expanding leaves wasmuch more stable than in desalted, crude extracts. It is suggested that another enzyme is involved in this inactivationof PEPC, but this needs verification.  相似文献   

12.
Autotoxic species are those which adversely affect their own seeds’ germination and/or seedling development. Cistus ladanifer L (labdanum or jara) has been shown to have a pattern of allelopathic behaviour against the herbs that share its habitat. The present work studied whether an autotoxic effect also exists. The aqueous solution obtained from washing jara leaves was found by itself to inhibit germination and cotyledon emergence of the species’ seeds. When these same trials were carried out in soils, autotoxicity was observed only from leaves and soils collected in winter. This was so both in soils collected away from the influence of the jaral to which was added the greatest concentration of aqueous extract prepared from the leaves, and in soils collected within the jaral, except that in the latter group of soils germination was inhibited with or without the addition of C. ladanifer extracts. This autotoxic behaviour could be involved in the species’ own population control, and would explain the scant self-regeneration within established C. ladanifer stands.  相似文献   

13.
Aminopeptidase activity from germinated jojoba cotyledons   总被引:2,自引:1,他引:1       下载免费PDF全文
One major and two minor aminopeptidase activities from germinated jojoba (Simmondsia chinensis) cotyledon extracts were separated by ammonium sulfate precipitation and chromatofocusing. None of the activities were inhibited by 1,10 phenanthroline.

The major aminopeptidase, purified 260-fold, showed a pH optimum of 6.9 with leucine-p-nitroanilide as substrate, a molecular weight estimated at 14,200 by electrophoretic analysis, and an isoelectric point of 4.5 according to the chromatofocusing pattern. Activity was inhibited by p-chloromercuribenzoate, slightly stimulated by 1,10 phenanthroline and 2-mercaptoethanol, and not influenced by Mg2+ or diethyl pyrocarbonate. Inhibition by p-chloromercuribenzoate was prevented by the presence of cysteine in the assay. Leucine-p-nitroanilide and leucine-β-naphthylamide were the most rapidly hydrolyzed of 11 carboxy-terminal end blocked synthetic substrates tested. No activity on endopeptidase or carboxypeptidase specific substrates was detected. The major aminopeptidase showed activity on a saline soluble, jojoba seed protein preparation and we suggest a possible physiological role for the enzyme in the concerted degradation of globulin reserve proteins during cotyledon senescence.

  相似文献   

14.
The growth in area of the first eight leaves of broad bean plantswas investigated in growth room experiments. Plants were grownat either 20 or 14 °C or transferred from 20 to 14 °C.Rates of leaf appearance and unfolding increased with temperature.The duration of growth of a leaf increased with leaf numberfor the first five leaves and then remained constant The meangrowth rate declined or remained constant with increasing leafnumber Durations of growth were shorter and growth rates largerat 20 °C than at 14 °C Plants responded immediatelyto the change in temperature Final areas of leaves which expandedafter transfer from 20 to 14 °C were larger than those grownat 20 °C Vicla faba L., broad bean, leaf expansion, temperature responses  相似文献   

15.
DIX  N. J. 《Annals of botany》1974,38(2):505-514
It was confirmed that the leaves of Acer platanoides containan antifungal inhibitory substance. Low concentrations of sterilecold water extracts inhibited the germination of the sporesof Cladosporium herbarum (three isolates), Cladosporium sphaerospermumand Cylindrocarbon radiclcola. In the concentration range 0·06–0·125per cent (w/v) of leaf material the inhibitory response wasdemonstrated to increase linearly as the concentration of leafmaterial increased logarithmically. Inhibitory activity wasfound in leaf samples collected during a period from July toOctober but activity had disappeared from leaves collected inthe following January. The inhibitory activity was located intwo components of the water extract by bioassay tests followingether extraction and separation by chromatography. One of theactive components has been identified as gallic acid by gaschromatography. Gallic acid has also been detected in dew collectedfrom leaf surfaces where it is suggested that it may play animportant part in the colonization of the leaves by fungi.  相似文献   

16.
Two proteolytic thermophilic aerobic bacterial strains, PA-9 and PA-5, were isolated from Buranga hot springs in western Uganda. The cells were rods, approximately 10–12 μm in length and 3 μm in width. Isolate PA-9 grew at between 38°C and 68°C (optimum, 62°C), and PA-5 grew at between 37°C and 72°C (optimum, 60°C). Both isolates grew optimally at pH 7.5–8.5. Their 16S rRNA gene sequences indicated that they belong to the newly described genus Geobacillus. Zymogram analysis of the crude enzyme extracts revealed the presence of two extracellular proteases for isolate PA-5, and at least eight for isolate PA-9. The optimum temperature and pH for casein-degrading activity were 70°C, pH 6.5 for isolate PA-9, but caseinolytic activity could also be observed at 2°C. In the case of isolate PA-5, optimal activity was observed over a temperature and pH range of 50–70°C and pH 5–10, respectively. Received: 26 November 2001 / Accepted: 12 December 2001  相似文献   

17.
Elongation of successive leaves was measured following defoliationof tall fescue plants in controlled environments. Measurementswere made under constant temperatures of 24 °C and 14 °C,and after temperature changes from 24 to 14 °C andvice versa.A morphological analysis of the growing leaf was made from thetime it was 1 mm long until it was fully elongated. The timeelapsed from initiation until the leaf was 1 mm long was estimated.Young leaves less than 1.5 mm long elongated slowly at a constantleaf elongation rate (LER). By extrapolating this LER back toleaf initiation from the apex it was calculated that elongationlasted 42.5 d at 24 °C and 51 d at 14 °C. Lengths ofthe division zone (DZ) and the extension-only zone (E-OZ) increasedto a maximum and then decreased during leaf development. Temperaturechange had an immediate effect on LER but the response varieddepending on the direction of the temperature change. To describethese different features, an empirical model of DZ and E-OZwas designed. Its five parameters were optimized at constanttemperature. The model was then used to simulate the LER ofplants subjected to temperature changes. Instant and lastingeffects of the initial temperature on mean LER in plants transferredfrom 14 to 24 °C andvice versawere well simulated. It wasconcluded that the major reason for differences was due to thegrowth stage (DZ and E-OZ lengths) at which the changes occurredat both temperatures.Copyright 1999 Annals of Botany Company Festuca arundinaceaSchreb., tall fescue, growth zone, division zone.  相似文献   

18.
Measurements of leaf initiation, appearance, and expansion arepresented for winter wheat and spring barley crops. For winterwheat, these processes occurred during periods of several weekswhen fluctuating temperatures influenced process rates. Analysisof these measurements was facilitated by plotting variablesagainst the time integral of temperature above an appropriatebase temperature (O °C), here called thermal time with unitsof °C d. Leaf primordial number and appearance stage increasedlinearly with thermal time for both winter wheat and springbarley which initiated 12 and 9 leaves respectively. When plottedagainst thermal time 90% of laminar and leaf length growth and80% of laminar width growth was satisfactorily described bya straight line for both species. This enabled an average extensionrate and duration of linear growth to be defined for each leaf.When expressed in thermal time, wheat leaves had a similar durationof linear growth (210 °C d; s.d. 30 °C d) with insolationexerting a negligible influence. The first seven barley leaveshad a shorter duration of linear growth (151 °C d; s.d.8 °C d). For wheat, final leaf length and laminar widthincreased with leaf number and were not apparently associatedwith changes in apical development stage. Changes of barleyleaf dimensions with leaf number were more complex.  相似文献   

19.
Plants of the C4 sedge Cyperus longus L. were grown at 10, 20and 30 °C. An asymptotic growth curve, the Richards function,was fitted to growth data for successive leaves. The mean rateof leaf appearance was a linear function of temperature with0.014 leaves appearing per day for every 1 °C increase intemperature. The instantaneous relative rate of leaf extensionshowed a marked ontogenetic drift which was most rapid at 30°C and slowest at 10 °C. The mean absolute extensionrate for foliage had a temperature coefficient of 0.16 cm d–1° C–1 in the range from 10 to 30 °C. The durationof leaf growth was independent of leaf number at 10 and 20 °Cbut increased linearly with leaf number at 30 °C. The smalldifferences in relative growth rate at the three temperaturesresulted in large differences in foliage area produced at theend of a 30 d growth period. The final foliage areas at 20 and10 °C were 51 and 9% respectively of that at 30 °C. Cyperus longus, temperature, leaf growth, Richards function, growth analysis  相似文献   

20.
The effect of acclimation to 10 °C on the leaf content of ascorbic and oxalic acids, was investigated in spinach (Spinacia oleracea L.). At 10 °C the content of ascorbic acid in leaves increased and after 7 days it was about 41% higher than in plants remaining under a 25 °C/20 °C day/night temperature regime. In contrast, the content of oxalate, remained unchanged. Transfer to 10 °C increased the ascorbic but not the oxalic acid content of the leaf intercellular washing fluid (IWF). Oxalate oxidase (OXO EC 1.2.3.4) activity was not detected in extracts of leaf blades. Therefore, oxalic acid degradation via OXO was not involved in the control of its content. Our results show that low temperature acclimation increases nutritional quality of spinach leaves via a physiological rise of ascorbic acid that does not feed-forward on the content of oxalic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号