首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermal exchanges during sleep in anhidrotic ectodermal dysplasia   总被引:1,自引:0,他引:1  
Anhidrotic ectodermal dysplasia is a congenital syndrome characterized by the absence of sweat glands. A sweating test was performed on such a patient and proved his inability to sweat. Thermal exchanges during night sleep were then measured in this patient and compared with data obtained from a healthy control subject. Ambient conditions were as follows: dry bulb temperature 32.2 degrees C, relative humidity 30%-40%, wind speed 0.7 m.s-1. Polysomnographic recordings showed normal sleep patterns in both subjects, but a "first night effect" in the patient. Rectal (Tre) and mean skin (Tsk) temperatures and loss of mass were monitored continuously throughout the 8-h sleep recording. Loss of mass averaged 34.1 g.h-1 in the patient vs 78.1 g.h-1 in the control subject. No relationship with sleep stages was observed in the patient, in contrast to the control subject who experienced a decrease in evaporation during rapid eye movement sleep. Body temperatures varied little in the patient, but decreased until the 6th h of sleep in the control subject. On two occasions there was a 0.3 degrees C fall in the Tre of the patient during two slow wave sleep (SWS) phases, while Tsk and loss of mass did not change. As thermolytic processes had not varied on these two occasions, it was concluded that the fall in Tre indicated a concomitant decrease in metabolic heat production, in agreement with the assumption that SWS represented a state of energy conservation.  相似文献   

2.
3.
4.
5.
Signaling and subcellular localization of the TNF receptor Edar   总被引:4,自引:0,他引:4  
Tabby and downless mutant mice have identical phenotypes characterized by deficient development of several ectodermally derived organs such as teeth, hair, and sweat glands. Edar, encoded by the mouse downless gene and defective in human dominant and recessive forms of autosomal hypohidrotic ectodermal dysplasia (EDA) syndrome, is a new member of the tumor necrosis factor (TNF) receptor superfamily. The ligand of Edar is ectodysplasin, a TNF-like molecule mutated in the X-linked form of EDA and in the spontaneous mouse mutant Tabby. We have analyzed the response of Edar signaling in transfected cells and show that it activates nuclear factor-kappaB (NF-kappaB) in a dose-dependent manner. When Edar was expressed at low levels, the NF-kappaB response was enhanced by coexpression of ectodysplasin. The activation of NF-kappaB was greatly reduced in cells expressing mutant forms of Edar associated with the downless phenotype. Overexpression of Edar did not activate SAPK/JNK nor p38 kinase. Even though Edar harbors a death domain its overexpression did not induce apoptosis in any of the four cell lines analyzed, nor was there any difference in apoptosis in developing teeth of wild-type and Tabby mice. Additionally, we show that the subcellular localization of dominant negative alleles of downless is dramatically different from that of recessive or wild-type alleles. This together with differences in NF-kappaB responses suggests an explanation for the different mode of inheritance of the different downless alleles.  相似文献   

6.
Mouse R-spondin2 (Rspo2) is a member of the R-spondin protein family, which is characterized by furin-like cysteine-rich domains and a thrombospondin type 1 repeat. R-spondin is a secreted molecule that activates Wnt/ β -catenin signaling. Rspo2 -deficient mice were generated to investigate the function of mouse Rspo2 during embryonic development. The homozygous mutant forelimb showed defects in distal phalanges and nail structures, and the digits were anomalous in shape. The homozygous mutant hindlimb showed more severe malformations, including lack of digits and zeugopod components. Rspo2 is expressed in the apical ectodermal ridge (AER) of the developing limb. Fgf8 expression in the AER was significantly lower in the homozygous mutant forelimb than in the wild-type forelimb and it was disturbed along the dorsoventral axis. In the homozygous mutant hindlimb, Fgf8 and Fgf4 expression in the posterior AER and Sonic hedgehog expression in the zone of polarizing activity (ZPA) were reduced. The homozygous mutant hindlimb also showed expansion of Wnt7a expression in the dorsal ectoderm toward the ventral side. This study shows that Rspo2 is critical for maintenance of the AER and for growth and patterning in limb development.  相似文献   

7.
Sonichedgehog(Shh)信号通路在牙早期发育中起关键作用,Shh通过与其特定的受体Ptc/Smo蛋白复合物相互作用来激活整个信号通路。Shh在牙早期发育过程中的表达具有时间和空间特异性,通过自分泌和旁分泌作用于上皮组织以及周围的间充质,促进细胞增殖、分化,调控牙的形态发生。Shh基因缺失将导致小鼠在帽状期牙形态的严重畸形,牙体变小,牙索缺失。对Shh信号通路在牙早期发育的作用及其与Wnt信号通路、BMP家族、FGF家族和MSX家族之间的相互关系进行综述。  相似文献   

8.
9.
Teeth arise from sequential and reciprocal interactions between the oral epithelium and the underlying cranial neural crest‐derived mesenchyme. Their formation involves a precisely orchestrated series of molecular and morphogenetic events, and gives us the opportunity to discover and understand the nature of the signals that direct cell fates and patterning. For that reason, it is important to elucidate how signaling factors work together in a defined number of cells to generate the diverse and precise patterned structures of the mature functional teeth. Over the last decade, substantial research efforts have been directed toward elucidating the molecular mechanisms that control cell fate decisions during tooth development. These efforts have contributed toward the increased knowledge on dental stem cells, and observation of themolecular similarities that exist between tooth development andregeneration. Birth Defects Research (Part C) 87:199–211, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
ABSTRACT

The TGFβ superfamily of proteins participates in tooth development. TGFβ1 and TGFβ3 regulate odontoblast differentiation and dentin extracellular matrix synthesis. Although the expression of TGFβ family member ligands is well-characterized during mammalian tooth development, less is known about the TGFβ receptor, which is a heteromeric complex consisting of a type I and type II receptors. The molecular mechanism of ALK5 (TGFβR1) in the dental mesenchyme is not clear. We investigated the role of ALK5 in tooth germ mesenchymal cells (TGMCs) from the lower first molar tooth germs of day 15.5 embryonic mice. Human recombinant TGFβ3 protein or an ALK5 inhibitor (SD208) was added to the cells. Cell proliferation was inhibited by SD208 and promoted by TGFβ3. We found that SD208 inhibited TGMCs osteogenesis and dentinogenesis. Both canonical and noncanonical TGFβ signaling pathways participated in the process. TAK1, P-TAK1, p38 and P-p38 showed greater expression and SMAD4 showed less expression when ALK5 was inhibited. Our findings contribute to understanding the role of TGFβ signaling for the differentiation of mesenchymal stem cells derived from dental germ and suggest possible targets for optimizing the use of stem cells of dental origin for tissue regeneration.  相似文献   

11.
In a cross-sectional study, data from records of cattle slaughtered over a 1-year period at a large abattoir in South West England were analysed using an ordered category response model to investigate the inter-relationships between age, sex and breed on development of the permanent anterior (PA) teeth. Using the model, transition points at which there was a 50% probability of membership of each category of paired PA teeth were identified. Data from ∼60 000 animals were initially analysed for age and sex effect. The age transition was found to be ∼23 months moving from zero to two teeth; 30 months for two to four teeth; 37 months for four to six teeth and 42 months for six to eight teeth. Males were found to develop, on average, ∼22 days earlier than females across all stages. A reduced data set of ∼23 000 animals registered as pure-bred only was used to compare breed and type interactions and to investigate sex effects within the sub-categories. Breeds were grouped into dairy and beef-type and beef breeds split into native and continental. It was found that dairy-types moved through the transition points earlier than beef-types across all stages (interval varying between ∼8 and 12 weeks) and that collectively, native beef breeds moved through the transition points by up to 3 weeks earlier than the continental beef breeds. Interestingly, in contrast to beef animals, dairy females matured before dairy males. However, the magnitude of the difference between dairy females and males diminished at the later stages of development. Differences were found between breeds. Across the first three stages, Ayrshires and Guernseys developed between 3 and 6 weeks later than Friesian/Holsteins and Simmental, Limousin and Blonde Aquitaine 6 and 8 weeks later than Aberdeen Angus. Herefords, Charolais and South Devon developed later but by a smaller interval and Red Devon and Galloway showed the largest individual effect with transition delayed by 8 to 12 weeks.  相似文献   

12.
The apical ectodermal ridge (AER) is a specialized thickening of the distal limb ectoderm, and its signals are known to support limb morphogenesis. The expression of a homeobox gene, Msx1 , in the distal limb mesoderm depends on signals from the AER. In the present paper it is reported that Msx1 expression in the distal mesoderm is necessary for the transfer of AER signals in chick limb buds. Interruption of AER-mesoderm interaction by insertion of a thick filter led to the inhibition of pattern specification in the mesoderm just under the filter. In such cases, the expression of Msx1 disappeared in the mesoderm under the filter, suggesting that AER is able to signal over short ranges. In advanced limb buds, Msx1 is also expressed in the proximal mesoderm under the anterior ectoderm. However, it was found that a grafted antero-proximal mesoderm shows no inhibitory effects on pattern specification of the host mesoderm, as is the case with the distal mesoderm. On the other hand, grafted mesoderms without potent Msx1 re-expression, even underneath AER, disturbed normal limb development. In such cases, the expression of Msx1 disappeared in the mesoderm under the grafts, whereas Fgf-8 expression was maintained in the AER above the graft. These results indicate that the expression of Msx1 in the mesoderm is important for the transfer of AER signals.  相似文献   

13.
To determine whether the deletion of p16 can correct tooth and mandible growth retardation caused by Bmi1 deficiency, we compared the tooth and mandible phenotypes of homozygous p16-deficient (p16−/−) mice, homozygous Bmi1-deficient (Bmi1−/−) mice, double homozygous Bmi1 and p16-deficient (Bmi1−/−p16−/−) mice to those of their wild-type littermates at 4 weeks of age by radiograph, histochemistry and immunohistochemistry. Results showed that compared to Bmi1−/− mice, the dental mineral density, dental volume and dentin sialoprotein immunopositive areas were increased, whereas the ratio of the predentin area to total dentin area and that of biglycan immunopositive area to dentin area were decreased in Bmi1−/−p16−/− mice. These results indicate that the deletion of p16 can improve tooth development in Bmi1 knockout mice. Compared to Bmi1−/− mice, the mandible mineral density, cortical thickness, alveolar bone volume, osteoblast number and activity, alkaline phosphatase positive area were all increased significantly in Bmi1−/−p16−/− mice. These results indicate that the deletion of p16 can improve mandible growth in Bmi1 knockout mice. Furthermore, the protein expression levels of cyclin D, CDK4 and p53 were increased significantly in p16−/− mice compared with those from wild-type mice; the protein expression levels of cyclin D and CDK4 were decreased significantly, whereas those of p27 and p53 were increased significantly in Bmi1−/− mice; these parameters were partly rescued in Bmi1−/−p16−/− mice compared with those from Bmi1−/− mice. Therefore, our results indicate that Bmi1 plays roles in regulating tooth and mandible development by inhibiting p16 signal pathway which initiated entry into cell cycle.  相似文献   

14.
Liu Y  Yu X  Wang L  Li C  Archacki S  Huang C  Liu JY  Wang Q  Liu M  Tang Z 《Gene》2012,491(2):246-250
X-linked recessive hypohidrotic ectodermal dysplasia (XLHED) is characterized by the defective morphogenesis of teeth, hair, and eccrine sweat glands. It is associated with mutations in the EDA gene. Up to now, more than 100 mutations in the EDA gene have been reported to cause XLHED. The product of EDA gene is a trimeric type II transmembrane protein that belongs to the tumor necrosis factor (TNF) family of ligands. In this study, we identified a Chinese family with XLHED. Direct DNA sequencing of the whole coding region of EDA revealed a novel missense mutation, p.Leu354Pro in a patient affected with XLHED. This mutation was not found in either unaffected male individuals of the family or 168 normal controls. The substitution of Leu354 with Pro was found to be located in the TNF-like domain of EDA and may influence the epithelial signaling pathway required for the normal ectodermal development through altering the topology of EDA. Our finding broadens the spectrum of EDA mutations and may help to understand the molecular basis of XLHED and aid genetic counseling.  相似文献   

15.
The skeletal structure of the mammalian middle ear, which is composed of three endochondral ossicles suspended within a membranous air‐filled capsule, plays a critical role in conducting sound. Gene mutations that alter skeletal development in the middle ear result in auditory impairment. Mutations in fibroblast growth factor receptor 2 (FGFR2), an important regulator of endochondral and intramembranous bone formation, cause a spectrum of congenital skeletal disorders featuring conductive hearing loss. Although the middle ear malformations in multiple FGFR2 gain‐of‐function disorders are clinically characterized, those in the FGFR2 loss‐of‐function disorder lacrimo‐auriculo‐dento‐digital (LADD) syndrome are relatively undescribed. To better understand conductive hearing loss in LADD, we examined the middle ear skeleton of mice with conditional loss of Fgfr2. We find that decreased auditory function in Fgfr2 mutant mice correlates with hypoplasia of the auditory bulla and ectopic bone growth at sites of tendon/ligament attachment. We show that ectopic bone associated with the intra‐articular ligaments of the incudomalleal joint is derived from Scx‐expressing cells and preceded by decreased expression of the joint progenitor marker Gdf5. Together, these results identify a role for Fgfr2 in development of the middle ear skeletal tissues and suggest potential causes for conductive hearing loss in LADD syndrome.  相似文献   

16.
Msx homeobox gene family and craniofacial development   总被引:9,自引:0,他引:9  
Alappat S  Zhang ZY  Chen YP 《Cell research》2003,13(6):429-442
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice.  相似文献   

17.
Grainyhead‐like genes are part of a highly conserved gene family that play a number of roles in ectoderm development and maintenance in mammals. Here we identify a novel allele of Grhl2, cleft‐face 3 (clft3), in a mouse line recovered from an ENU mutagenesis screen for organogenesis defects. Homozygous clft3 mutants have a number of phenotypes in common with other alleles of Grhl2. We note a significant effect of genetic background on the clft3 phenotype. One of these is a reduction in size of the telencephalon where we find abnormal patterns of neural progenitor mitosis and apoptosis in mutant brains. Interestingly, Grhl2 is not expressed in the developing forebrain, suggesting this is a survival factor for neural progenitors exerting a paracrine effect on the neural tissue from the overlying ectoderm where Grhl2 is highly expressed. genesis 53:573–582, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Mutations in enhancers have been shown to often underlie natural variation but the evolved differences in enhancer activity can be difficult to identify in vivo. Threespine sticklebacks (Gasterosteus aculeatus) are a robust system for studying enhancer evolution due to abundant natural genetic variation, a diversity of evolved phenotypes between ancestral marine and derived freshwater forms, and the tractability of transgenic techniques. Previous work identified a series of polymorphisms within an intronic enhancer of the Bone morphogenetic protein 6 (Bmp6) gene that are associated with evolved tooth gain, a derived increase in freshwater tooth number that arises late in development. Here, we use a bicistronic reporter construct containing a genetic insulator and a pair of reciprocal two-color transgenic reporter lines to compare enhancer activity of marine and freshwater alleles of this enhancer. In older fish, the two alleles drive partially overlapping expression in both mesenchyme and epithelium of developing teeth, but the freshwater enhancer drives a reduced mesenchymal domain and a larger epithelial domain relative to the marine enhancer. In younger fish, these spatial shifts in enhancer activity are less pronounced. Comparing Bmp6 expression by in situ hybridization in developing teeth of marine and freshwater fish reveals similar evolved spatial shifts in gene expression. Together, these data support a model in which the polymorphisms within this enhancer underlie evolved tooth gain by shifting the spatial expression of Bmp6 during tooth development, and provide a general strategy to identify spatial differences in enhancer activity in vivo.  相似文献   

19.
The regulatory NEMO (NF-κB essential modulator) protein has a crucial role in the canonical NF-κB signaling pathway notably involved in immune and inflammatory responses, apoptosis and oncogenesis. The regulatory domain is located in the C-terminal half of NEMO and contains a classical CCHC-type zinc finger (ZF). We have investigated the structural and functional effects of a cysteine to phenylalanine point mutation (C417F) in the ZF motif, identified in patients with anhidrotic ectodermal dysplasia with immunodeficiency. The solution structures of the wild type and mutant ZF were determined by NMR. Remarkably, the mutant adopts a global ββα fold similar to that of the wild type and retains thermodynamic stability, i.e., the ability to bind zinc with a native-like affinity, although the last zinc-chelating residue is missing. However, the mutation induces enhanced dynamics in the motif and leads to an important loss of stability. A detailed analysis of the wild type solution structure and experimental evidences led to the identification of two possible protein-binding surfaces that are largely destabilized in the mutant. This is sufficient to alter NEMO function, since functional complementation assays using NEMO-deficient pre-B and T lymphocytes show that full-length C417F pathogenic NEMO leads to a partial to strong defect in LPS, IL-1β and TNF-α-induced NF-κB activation, respectively, as compared to wild type NEMO. Altogether, these results shed light onto the role of NEMO ZF as a protein-binding motif and show that a precise structural integrity of the ZF should be preserved to lead to a functional protein-recognition motif triggering full NF-κB activation.  相似文献   

20.
老年患者拔牙的安全性探讨   总被引:1,自引:0,他引:1  
老年人在患有口腔疾患的同时,可患有多种疾病。老年人拔牙的危险因素主要是精神紧张。接受拔牙手术的恐惧、焦虑致其在术前术中都处于高度紧张状态,拔牙时间长及麻醉效果差引起血压升高和心率加快等,故消除这些危险因素是获得拔牙成功的关键。一方面取决于病人是否有足够的心理承受能力,另一方面取决于医生能否快速、准确、无痛的拔牙。而术中的任何刺激都可诱发心血管意外及其他并发症的出现。本文通过对国内外文献的归纳、总结,从严格掌握适应症、禁忌症、麻醉药物的选择、充分的术前准备、术中意外的处理以及完善的术后等多方面进行阐述,将心理治疗用于手术全过程,确保老年患者拔牙的安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号