首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of 17beta-estradiol on cAMP and cGMP levels, protein kinases A and C activityand corticosteroids secretion was investigated in postoperative human adrenal cortex tissue. cAMP accumulation in adrenocorticocytes increased uiider the influence of 17beta-estradiol. In vitro estradiol raised the activities of protein kinases A and C in membrane fraction of adrenal cortex tissue. Significant increasing of steroidogenesis was observed. These data support our conclusion that cAMP dependent siganling system is involved in activation of steroidogenesis by 17beta-estradiol.  相似文献   

2.
The messenger mechanisms mediating K+ regulatory signals in human adrenocorticocytes were studied. It was shown that potassium ions initiated decay of polyphosphoinositides to inositolphosphates and obviously diacylglycerol. The latter compounds activate protein kinase C as affected by different agonists. Using western blotting method we showed translocation of PKCalpha from cytosol to membranes after adrenal tissue preincubation in the medium with increased K+ content (8.5 mM). Translocation means activation of the enzyme. Activity of PKC increased in the microsomal fraction and did not change in cytosol. Increased concentration of K+ in the incubation medium also activates protein kinase A, although to a lesser extent compared to PKC. Unlike PKC activity of PKA was changed in cytosol as well. The possibility of involvement of several messenger systems in K+ signal transduction in human adrenocortical cells as well as the hypothesis on cross-talk between messenger mechanisms for main physiological agonists controlling aldosterone biosynthesis in the adrenals are discussed.  相似文献   

3.
cAMP-dependent protein kinase was found in the sediment obtained by centrifuging a homogenate of sea urchin embryos at 10,000g for 20 min, and was solubilized with 1% Triton X-100. This enzyme was eluted at 0.16 M NaCl in a linear concentration gradient on a DEAE-cellulose column, at which cAMP-dependent protein kinase found in the supernatant was also eluted. The enzyme activity was enhanced about 1.5-fold in the presence of 1 μM cAMP, and increased somewhat by adding cGMP or cIMP. The activation by cAMP of protein kinase in the sedimentable fraction was lower than in the supernatant fraction. The properties of the enzyme found in the 10,000g sediment and in the supernatant differ somewhat. The activity of the cAMP-dependent protein kinase in the 10,000g sediment was high in the embryos at the blastula, the swimming blastula, and the mesenchyme blastula stages. On the other hand, the activity was undetectable in unfertilized eggs and in embryos at the morula, the gastrula, and the pluteus stages.  相似文献   

4.
The cAMP-dependent protein kinase from various tissues was more thermally sensitive when activated by cAMP than the non-activated enzyme. For example, when the activity ratio (the activity of protein kinase assayed -cAMP/+cAMP) was 0.40, 80% and 76% of total hepatic cAMP dependent protein kinase activity was recoverable after incubations at 45 degrees C for 15 and 30 minutes, respectively. However, when the activity ratio was elevated to about 0.80 - 0.90 by increasing cAMP levels in vivo or adding exogenous cAMP to soluble liver extracts, the total protein kinase activity recoverable after incubations at 45 degrees C for 15 minutes was 34-44% and 19-22%, respectively. This observation was used to estimate the degree of activation of the enzyme in vivo and in vitro, since the loss of enzyme activity at 45 degrees C was directly related to the degree of activation of the enzyme in tissue extracts. The regulatory-catalytic form of cAMP-dependent protein kinase was thermally resistant at 45 degrees C unless activated by incubation with exogenous cAMP, histones or NaCl, while the catalytic form of the enzyme was highly thermally sensitive at this same temperature. These data describe a new property of the cAMP-dependent protein kinase and suggest an alternative method which measure the degree of activation of the enzyme.  相似文献   

5.
6.
Protein kinase activities were identified in a soluble and a particulate fraction from the A. coronaria of cattle. For both protein kinase activities Mg++ is essential. Protamine was used as a substrate of the protein kinase activity of the soluble fraction. The pH optimum of the protein kinase activity of the soluble fraction is around 6.5. The Km-value of the protein kinase for ATP is 1.9 +/- 0.4 - 10(-5) M. cAMP stimulates the protein kinase activity more effectively than cGMP. Ca++ cannot replace Mg++; monovalent cations (Na+ and K+) show no influence. The protein kinase activity of the fraction was determined via endogenous phosphorylation. By means of the cAMP-dependent particulate protein kinase 72 to 80 percent of the serine residues are phosphorylated. The pH optimum of the protein kinase activity of the particulate fraction lies around 7.0. The Km-value of the enzyme for ATP is 6.6 +/- 0.8 - 10(-5) M. cGMP stimulates the protein kinase of the particulate fraction better than cAMP. For the protein kinase activity of this fraction Ca++ replaces Mg++ in the endogenous phosphorylation but not in the exogenous phosphorylation (protamine). In the presence of Mg++ and in the additional presence of Na+ or K+, the protein kinase activity is suppressed in the endogenous phosphorylation whereas it is stimulated in the exogenous phosphorylation.  相似文献   

7.
Calmodulin-activated protein kinase activity in the endoplasmic reticulum fraction of rat adipocytes was identified and characterized. The major endogenous protein substrate of the calmodulin-activated kinase activity has an apparent molecular weight of 54,000 as determined by sodium dodecyl sulfate gel electrophoresis. The calmodulin-activated component of the activity was saturated at 10 microM ATP. Calcium or calmodulin alone did not increase the activity, but the simultaneous presence of calcium and calmodulin increased activity three to four-fold. Half-maximal activation of this activity occurred at 8 microM Ca2+. The addition of increasing amounts of calmodulin caused a concentration-dependent activation in the presence of calcium, which was saturable at high calmodulin concentrations. Magnesium was required for activity, with half-maximal activity occurring at 230 microM. The antipsychotic drug trifluoperazine inhibited the activation of the protein kinase activity by calmodulin, but had a negligible effect on the basal activity. Half-maximal inhibition occurred at 63 microM. Phosphorylation of the 54,000 mol. wt band was independent of cAMP, cGMP and the combination of cAMP and cAMP-dependent protein kinase. Calmodulin-activated protein kinase phosphorylated both phosphoserine and phosphothreonine residues in the 54,000 mol. wt substrate. These experiments have partially characterized a calmodulin-activated protein kinase activity from adipocytes, which appears to be a unique activity of unknown function.  相似文献   

8.
The effect of corticotropin and inhibitor of protein kinase C, chelerythrine chloride, on the change of caspase-3 level and on the rate of DNA laddering in hyperplasia adrenal cortex tissue of patient with Cushing's syndrome was studied. It was established that ACTH caused significant antiapoptotic effect in the human adrenal cortex. The adding of ACTH to incubation medium caused a sharp decrease of the caspase-3 level in adrenocorticocytes. Chelerythrine chloride, on the contrary, increases the caspase-3 level by 22%. ACTH influence decreases DNA laddering. Either the adding of chelerythrine chloride to incubation medium, or the adding of chelerythrine chloride simultaneously with ACTH, led to the enhancing of DNA fragmentation. The obtained data suggest that antiapoptotic effect of ACTH in adrenal cortex tissue estimated according by the caspase-3 level and by the rate of DNA fragmentation depends on activation of protein kinase C. However, the intensification of DNA laddering can be also explained by cytotoxic effect, high level of interaction with DNA and strong intercalation ability of this alkaloid.  相似文献   

9.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

10.
In Saccharomyces cerevisiae, trehalase activity in crude extracts obtained from wild type cells was activated about 3-fold by preincubation with cAMP and ATP. The inactive trehalase fractionated by DEAE-Sephacel chromatography was activated by the addition of the cAMP-dependent protein kinase fraction from wild type cells in the presence of cAMP and ATP. Using the crude extract obtained from bcy1 mutant cells which were deficient in the regulatory subunit of cAMP-dependent protein kinase, the stimulation of trehalase activity was observed in the absence of cAMP. The cAMP-dependent protein kinase of CYR3 mutant cells which had a high Ka value for cAMP in the phosphorylation reaction required a high cAMP concentration for activation of trehalase. Increased activation of partially purified inactive trehalase (Mr = 320,000) was observed to correlate with increased phosphorylation of a protein (Mr = 80,000) identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The assay results using various mutants altered in cAMP metabolism indicated that the activation and phosphorylation of inactive trehalase fractions depended on the cAMP concentration accumulated in mutant cells. Inactivation and dephosphorylation of active trehalase fractions were observed by treatment with alkaline phosphatase or crude cell extracts. The results indicated that the conversion of inactive form of trehalase to the active form is regulated by cAMP through cAMP-dependent protein kinase.  相似文献   

11.
Cyclic AMP is the primary second messenger mediating odorant signal transduction in mammals. A number of studies indicate that cyclic GMP is also involved in a variety of other olfactory signal transduction processes, including adaptation, neuronal development, and long-term cellular responses in the setting of odorant stimulation. However, the mechanisms that control the production and degradation of cGMP in olfactory sensory neurons (OSNs) remain unclear. Here, we investigate these mechanisms using primary cultures of OSNs. We demonstrate that odorants increase cGMP levels in intact OSNs in vitro. Different from the rapid and transient cAMP responses to odorants, the cGMP elevation is both delayed and sustained. Inhibition of soluble guanylyl cyclase and heme oxygenase blocks these odorant-induced cGMP increases, whereas inhibition of cGMP PDEs (phosphodiesterases) increases this response. cGMP PDE activity is increased by odorant stimulation, and is sensitive to both ambient calcium and cAMP concentrations. Calcium stimulates cGMP PDE activity, whereas cAMP and protein kinase A appears to inhibit it. These data demonstrate a mechanism by which odorant stimulation may regulate cGMP levels through the modulation of cAMP and calcium level in OSNs. Such interactions between odorants and second messenger systems may be important to the integration of immediate and long-term responses in the setting odorant stimulation.  相似文献   

12.
Theophylline (theo), a known phosphodiesterase (PDE) inhibitor, was tested for its effects on ACTH1–24 regulated steroidogenesis in isolated bovine adrenal cortical cells. Theo produced a dose related inhibition of ACTH1–24 stimulated cortisol synthesis with half maximal inhibition occuring at 7 mM. Theo enhanced ACTH1–24 stimulated cellular adenosine 3′, 5′-monophosphate (cAMP) levels above that produced by ACTH1–24 alone confirming its inhibition of cAMP PDE. When tested on cAMP binding protein and cAMP-dependent protein kinase activities in cytosol prepared from bovine adrenal cortex, theo displaced 3H-cAMP binding to cAMP binding protein and inhibited cAMP-stimulated protein kinase activity. The half maximal inhibition of cAMP binding and protein kinase activity was observed at 10 and 5 mM, respectively. Inhibition of cAMP-dependent protein kinase by theo provides a possible explanation of its inhibitory effects on adrenal steroidogenesis and further implicates cAMP-dependent protein kinase in mediating ACTH stimulated steroidogenesis. Furthermore these studies suggest a novel mechanism of action for theo in addition to its known action on cAMP PDE.  相似文献   

13.
Cyclic nucleotide-dependent protein kinases in airway smooth muscle   总被引:6,自引:0,他引:6  
Because of the potential importance of cyclic nucleotide-dependent protein kinases in the regulation of airway smooth muscle tone, we have examined some of the characteristics of these enzymes in the soluble fraction of canine trachealis homogenates. In the absence of added cAMP, the heat-stable cAMP-dependent protein kinase inhibitor (PKI) abolished only a half of the 32P incorporation into mixed histones. The remaining activity appeared to be contributed by a cyclic nucleotide-independent enzyme. Phosphotransferase activity was enhanced 5-fold by 5 microM cAMP but only 70% of the cAMP-stimulated activity could be inhibited by PKI. The sensitivity of the cyclic nucleotide-dependent, PKI-resistant enzyme to cAMP, cGMP, and Mg2+ indicated that it was cGMP-dependent protein kinase. Because of the large amount of cyclic nucleotide-independent activity, and the ability of cAMP to activate cGMP-dependent protein kinase, the traditional "-cAMP/+cAMP" ratio did not provide an accurate assessment of the in vivo activation state of cAMP-dependent protein kinase. However, a modified assay was developed which allowed the precise measurement of cAMP-dependent, cGMP-dependent, and cyclic nucleotide-independent protein kinase activities. Using this new method, the cAMP-dependent protein kinase activity ratio of 0.239 in untreated trachealis strips was increased to 0.355 and 0.386 by prior exposure of the intact tissue to the smooth muscle relaxants isoproterenol and prostaglandin E2, respectively. The results of this study are consistent with the proposed role of cAMP-dependent protein kinase in the regulation of smooth muscle contractile function.  相似文献   

14.
Analysis of Saccharomyces cerevisiae genome revealed no sequence homologous to cyclic GMP (cGMP) dependent protein kinase from other organisms. Here we demonstrate that cyclic AMP (cAMP) dependent protein kinase purified from S. cerevisiae was almost equally activated by cAMP and cGMP in 3 x 10(-6) M concentrations of either nucleotide in the presence of Mg2+ ions. Interestingly, if Mn2+ ions were used instead of Mg2+, cGMP was only 30% as effective as cAMP in the activation of cAMP-dependent protein kinase. Analogs of cAMP such as 8-chloro-cAMP and 3':5'-cyclic monophosphate of ribofuranosylbenzimidazole were as potent as cAMP in the enzyme activation, while N6,2'-O-dibutyryl-cAMP activated the enzyme to a lower extent. It was also found that yeast cAMP-dependent protein kinase can be activated by limited proteolytic digestion. The results presented were obtained with protamine and ribosomal protein S10 used as phosphorylation substrates.  相似文献   

15.
U Padel  J Kruppa  R Jahn  H D S?ling 《FEBS letters》1983,159(1-2):112-118
Stimulation of secretion in exocrine cells is associated with the incorporation of up to 3 to 4 phosphates into the ribosomal protein S6. This occurs with secretagogues involving either cAMP or free calcium as second messenger. An analysis of the phosphorylation pattern of S6 from stimulated guinea pig parotid glands reveals 3 phosphopeptides (termed A,B,C). The phosphopeptide pattern was identical for cAMP- or calcium-mediated stimulation, whereas phosphorylation of the S6 protein in vitro with catalytic subunit of cAMP-dependent protein kinase resulted only in the formation of phosphopeptides A and C. Therefore, secretagogue-mediated phosphorylation is not or not exclusively catalyzed by cAMP-dependent protein kinase even when cAMP is the second messenger.  相似文献   

16.
The present investigations showed that after oral prostacyclin administration (100 micrograms/kg) as soon as the intracellular level of cAMP is elevated the activation of cAMP-dependent protein kinase follows in both parts (antrum and fundus) of rat gastric mucosa. The enzyme activation seems to be more significant in the fundic region which is in a complete agreement with the previously published results, i.e. the fundic mucosa reacts with de novo protein synthesis toward noxious agents (resulting finally in new cell formation), while the antral mucosa is more durable against damaging noxae. Taking into consideration all available data in the literature it seems that the intracellular effect of the exogenously administered prostacyclin in the gastric mucosa is a polyphasic effect, which contains the following consecutive steps: 1. Binding to the cell surface; 2. Effect on the intracellular second messenger system, (cAMP, cGMP); 3. Activation of the calmodulin system; 4. cAMP-dependent protein kinase activation; 5. DNA, RNA changes; 6. Influence on protein synthesis, and finally; 7. New cell formation.  相似文献   

17.
Activation of cAMP-dependent protein kinase II by static and dynamic steady-state cAMP levels was studied by reconstituting an in vitro model system composed of hormone-sensitive adenylate cyclase, cyclic nucleotide phosphodiesterase, and cAMP-dependent protein kinase II. The rates of cAMP synthesis were regulated by incubating isolated membranes from AtT20 cells with various concentrations of forskolin. In the presence of 3-methylisobutylxanthine, the rate of protein kinase activation was proportional to the rate at which cAMP was synthesized, and there was a direct relationship between the degree of activation and the level of cAMP produced. The activation profiles of protein kinase generated in the presence of exogenous cAMP or cAMP produced by activation of adenylate cyclase in the absence of cAMP degradation were indistinguishable. Dynamic steady-state levels of cAMP were achieved by incubating the membranes with forskolin in the presence of purified cyclic nucleotide phosphodiesterase. Under these conditions, the apparent activation constant of protein kinase II for cAMP was reduced by 65-75%. This increased sensitivity to activation by cAMP was seen when phosphotransferase activity was measured directly in reaction mixtures containing membranes, protein kinase, and histone H2B or when regulatory and catalytic subunits were first separated by immunoprecipitation of holoenzyme and regulatory subunits with specific anti-serum. Our results are consistent with the hypothesis that rapid cAMP turnover may function as a mechanism for amplifying hormonal signals which use the cAMP-dependent protein kinase system.  相似文献   

18.
The aim of the present paper is to point out the complexity of ACTH action in glomerulosa cells of the adrenal cortex. We demonstrate that the increase in cAMP production induced by ACTH is the result of a balance between activation of adenylyl cyclase and direct modulation of a PDE2 phosphodiestease activity, an effect mediated by inhibition of cGMP content. Moreover, Ca2+ is essential for cAMP production and aldosterone secretion, but its exact primary action is not clearly determined. We recently described that ACTH activated a chloride channel, via the Ras protein, which can be involved in steroidogenesis. ACTH also increases tyrosine phosphorylation of several proteins. These data, together with those of phospholipase C activation, indicate that ACTH action in the adrenal is complex, and most certainly not limited to cAMP production, in particular for the low concentrations of the hormone.

Some years ago, cAMP was considered to be the unique second messenger of ACTH action; now it becomes more and more evident that ACTH triggers complex signaling pathways using several second messengers in a closely interacting way. The most predominant point is that these signals are observed for low concentrations of ACTH.  相似文献   


19.
3',5'-Cyclic adenosine monophosphate (cAMP) modulates prostaglandin production in human amnion membranes. The major effects of cAMP are presumably mediated through the phosphorylation of specific regulatory phosphoproteins following cAMP activation of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase and phosphoproteins have not previously been characterized in human amnion. Total homogenates, cytosol, and membrane fractions from human amnion were examined for [3H]cAMP binding activity and cAMP-dependent kinase activity. cAMP-dependent kinase activity was barely detectable in crude amnion fractions. Cytosol was therefore partially purified by DEAE column chromatography for further examination. Two peaks of coincident [3H]cAMP binding and cAMP-dependent kinase activity were demonstrated at 70 and 140 mM NaCl, characteristic of the Type I and Type II cAMP-dependent protein kinase isozymes. [3H]cAMP binding to the material from both peak fractions was saturable and reversible. Scatchard analysis of [3H]cAMP binding to the peak fractions was linear for peak I and curvilinear for peak II. Assuming a one-site model, [3H]cAMP binding to the Type I isozyme showed a KD = 4.17 x 10(-8) M and Bmax = 73 pmole/mg protein; using a two-site model, [3H]cAMP binding to the high-affinity site for the Type II isozyme had a KD = 3.94 x 10(-8) M and Bmax = 6.3 pmole/mg protein. Other cyclic nucleotides competed for these [3H]cAMP binding sites with a potency order of cAMP much greater than cGMP greater than (BU)2cAMP.cAMP caused a dose-dependent increase in cAMP-dependent kinase activity in the peak fractions; half-maximal activation was observed with 5.0 x 10(-8) M cAMP. The ability of cAMP to increase phosphorylation of endogenous proteins in both crude amnion cytosol and cytosol from cultures of amnion epithelial cells was assessed using [32P]ATP, SDS-polyacrylamide gel electrophoresis and autoradiography. cAMP stimulated 32P incorporation into three proteins having Mr = 80,000, 54,000, and 43,000 (P less than .01). Half-maximal 32P incorporation into these proteins occurred at 1.0 x 10(-7) M cAMP. cAMP-dependent kinase is present in human amnion; specific cAMP-enhanced phosphoproteins are also present. Hormones elevating cAMP levels in amnion may exert their effects by activating cAMP-dependent kinase and phosphorylating these phosphoproteins.  相似文献   

20.
Na+, K+-ATPase activity of homogenates prepared from cauda epididymal golden hamster sperm increased after the addition of cGMP (50 microM), monobutyryl cGMP (0.5 microM) or cGMP-dependent protein kinase (0.94 micrograms/ml). Addition of monobutyryl cAMP (0.5 microM) or purified catalytic subunit of cAMP-dependent protein kinase (1.26 micrograms/ml) inhibited the activity of the Na+, K+-ATPase. Preincubation with a partially purified preparation of cAMP-dependent protein kinase inhibitor (75 micrograms/ml) stimulated the activity of the Na+, K+-ATPase, and this stimulation was decreased by the addition of 5 microM monobutyryl cAMP. It is not yet known whether direct and/or indirect mechanisms are involved, but these results are the first to describe such opposing effects by cyclic nucleotide-mediated processes on a Na+, K+-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号