首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Gravel  B Fournier    P H Roy 《Nucleic acids research》1998,26(19):4347-4355
Integrons are genetic elements that are able to capture genes by a site-specific recombination mechanism. Integrons contain a gene coding for a lambda-like integrase that carries out site-specific recombination by interacting with two different target sites; the attI site and the palindromic sequence attC (59 base element). Cassette integrations usually involve the attI site, while cassette excisions use attC . Therefore, the integrase should bind both sites to cleave DNA and perform site-specific recombination reactions. We have used purified maltose-binding protein fused with the integrase (MBP-IntI1) and native IntI1 protein and gel retardation assays with fragments containing the complete and partial attI1 site to show formation of four complexes in this region. Chemical modification of specific nucleotides within the attI1 site was used to investigate their interference with binding of the integrase protein. We attribute IntI1 specific binding to four regions in the attI1 site and a GTTA consensus sequence is found in three of the four regions. Interference by modified guanine and thymine residues in the DNA major groove and adenine residues in the minor groove were observed, indicating that the integrase interacts with both sides of the helix. Binding of IntI1 to attC is also discussed.  相似文献   

2.
The integron platform codes for an integrase (IntI) from the tyrosine family of recombinases that mediates recombination between a proximal double-strand recombination site, attI and a single-strand target recombination site, attC. The attI site is only recognized by its cognate integrase, while the various tested attCs sites are recombined by several different IntI integrases. We have developed a genetic system to enrich and select mutants of IntI1 that provide a higher yield of recombination in order to identify key protein structural elements important for attC × attI1 recombination. We isolated mutants with higher activity on wild type and mutant attC sites. Interestingly, three out of four characterized IntI1 mutants selected on different substrates are mutants of the conserved aspartic acid in position 161. The IntI1 model we made based on the VchIntIA 3D structure suggests that substitution at this position, which plays a central role in multimer assembly, can increase or decrease the stability of the complex and accordingly influence the rate of attI × attC recombination versus attC × attC. These results suggest that there is a balance between the specificity of the protein and the protein/protein interactions in the recombination synapse.  相似文献   

3.
Phage lambda integrative and excisive recombination normally proceeds by a pair of sequential strand exchanges. During the first exchange reaction, the "top" strand in each recombination site is cleaved, exchanged, and religated generating a Holliday junction intermediate. This intermediate DNA structure is resolved through a pair of reciprocal "bottom" strand exchanges, leading to recombinant products. The strict co-ordination of exchange reactions ensures religation between correct partner strands only. Here we show that the directionality of recombination is altered in vivo by two mutant integrases, Int-h (E174 K) and a double mutant Int-h/218 (E174 K/E218 K). This change in directionality leads to deletion instead of inversion on substrates that carry inverted attachment sites and, depending on the pair of target sites employed, requires the presence or absence of integration host factor. Neither Fis nor Xis is involved in deletion. Sequence analyses of deletion products reveal that the newly generated hybrid attachment site exhibits a reversed genetic polarity. We demonstrate that only one of two possible hybrid site configurations is generated and discuss two pathways leading to deletion. In the first, deletion results from a wrong alignment of the two recombination sites within the synaptic complex. In the second pathway, the unco-ordinated cleavage by the mutant integrases of all four DNA strands present in a conventional Holliday junction intermediate leads to two double-stranded breaks, whereby the subsequent rejoining between "wrong" partner strands appears restricted to only two strands.  相似文献   

4.
The Escherichia coli argU gene encodes a rare arginine tRNA (anticodon UCU) that translates the similarly rare AGA codon. The argU10(Ts) mutation is a transition that changes the first nucleotide of the mature tRNA from G to A, presumably destabilizing the acceptor stem. This mutation, when present in haploid condition in the chromosome, reduces the growth rate at 30 degrees C and results in cessation of growth after 60 to 90 min at 43 degrees C. The mutation also preferentially limits (compared with total protein synthesis) translation of an induced gene that depends on five AGA codons, i.e., the lambda cI repressor gene. Translation of another inducible protein, beta-galactosidase, which does not involve AGA codons, was inhibited to a much lesser extent. The chromosomal argU(Ts) mutation also confers the Pin phenotype, that is, loss of ability of the host, as a P2 lysogen, to inhibit growth of bacteriophage lambda, probably the result of reduced translation of the P2 old gene, which contains five AGA codons (E. Hagg?rd-Ljungquist, V. Barreiro, R. Calendar, D. M. Kurnit, and H. Cheng, Gene 85:25-33, 1989).  相似文献   

5.
C Alén  D J Sherratt    S D Colloms 《The EMBO journal》1997,16(17):5188-5197
Xer site-specific recombination at ColE1 cer converts plasmid multimers into monomers, thus ensuring the heritable stability of ColE1. Two related recombinase proteins, XerC and XerD, catalyse the strand exchange reaction at a 30 bp recombination core site. In addition, two accessory proteins, PepA and ArgR, are required for recombination at cer. These two accessory proteins are thought to act at 180 bp of accessory sequences adjacent to the cer recombination core to ensure that recombination only occurs between directly repeated sites on the same molecule. Here, we demonstrate that PepA and ArgR interact directly with cer, forming a complex in which the accessory sequences of two cer sites are interwrapped approximately three times in a right-handed fashion. We present a model for this synaptic complex, and propose that strand exchange can only occur after the formation of this complex.  相似文献   

6.
The cloning of the gene for staphylococcal nuclease A in the pIN-III-OmpA secretion vector results in a hybrid protein which is processed by signal peptidase I, yielding an active form of the nuclease that is secreted across the cytoplasmic membrane (Takahara, M., Hibler, D., Barr, P. J., Gerlt, J. A., and Inouye, M. (1985) J. Biol. Chem. 260, 2670-2674). Using oligonucleotide-directed site-specific mutagenesis, we have constructed a set of mutants at the cleavage site area of the precursor hybrid protein designed to alter progressively the predicted secondary structure of the cleavage site. Our results show that processing becomes increasingly defective as the turn probability decreases. These results are consistent with the structural requirement that we found for the processing of lipoprotein by signal peptidase II (Inouye, S., Duffaud, G., and Inouye, M. (1986) J. Biol. Chem. 261, 10970-10975). We conclude that secretory precursor proteins have a distinct secondary structural requirement at their cleavage site for processing by signal peptidase I, as well as by signal peptidase II.  相似文献   

7.
8.
A recombination site in the transducing bacteriophage lambda plac5 DNA has been structurally elucidated. Comparison of primary structures of E. coli lac-operon (distal end of lacZ gene, Z-Y spacer, and proximal end of lacY gene) described earlier with corresponding segments of bacteriophages lambda CI857 and lambda plac 5-2 DNAs sequenced in this paper showed that the bacterial DNA insert ends immediately after Z-Y spacer, just before the initiating triplet ATG of lacY gene. It thus follows that in contrast to the earlier conception, the insert does not seem to include any part of lacY gene. The recombination sites in both phage and bacterial DNA contain structurally homological segments about 20 b. p. long (crossover region), with two extra basepairs in the bacterial DNA (AT in the sense-strand). We suppose that the very dinucleotide plays a substantial role in initiation of recombinational event: causing formation of a nonperfect heteroduplex structure, it determines the T-A internucleotide bond to be endonucleolytically cut (crossover point) followed by exonucleolytic elimination of the extra links (AT) and reciprocal strand exchange. The second recombination site in lambda plac5 DNA has been localized by us within lacI gene as being close to the HindII site (nucleotides 854 to 859 of the gene). The structures of the two regions of site-specific recombination may shed light upon mechanisms of the phage abnormal excision leading to formation of transducing phages.  相似文献   

9.
The aim of this article is to demonstrate possible recombination‐associated evolutionary forces affecting the genomic distribution of processed pseudogenes. The relationship between recombination rate and the distribution of processed pseudogenes is analysed in the human genome. The results show that processed pseudogenes preferentially accumulate in regions of low recombination rates and this correlation cannot be explained by indirect relationships with GC content and gene density. Several explanatory models for the observation are discussed. A model of selection against ectopic recombination is tested based on the difference in distribution pattern between two classes of processed pseudogenes, which differ in the possibility of stimulating ectopic recombination. Our results indicate that the correlation between processed pseudogene density and recombination rate is probably results, in part, from the selection against ectopic recombination between closely located homologous processed pseudogenes. We also found a length effect in processed pseudogene distribution, namely long processed pseudogenes are located more preferentially in regions of low recombination rates than short ones.  相似文献   

10.
Birnboim, H. C. (Albert Einstein College of Medicine, New York, N.Y.). Cellular site in Bacillus subtilis of a nuclease which preferentially degrades single-stranded nucleic acids. J. Bacteriol. 91:1004-1011. 1966.-A nuclease, identified by a marked preference for single-stranded nucleic acids, has been demonstrated in extracts of Bacillus subtilis. The enzyme was associated with the cell wall-membrane fraction of mechanically disrupted cells and was released from cells which had been converted to protoplasts by lysozyme. The nuclease activity prepared by the latter procedure was found to be activated and solubilized by treatment with trypsin. The enzyme had about 2% activity on native deoxyribonucleic acid (DNA) as compared with denatured DNA. By use of CsCl analytical density gradient ultracentrifugation, this preparation was shown to degrade denatured DNA selectively in mixtures of native and denatured DNA.  相似文献   

11.
R R Reed  N D Grindley 《Cell》1981,25(3):721-728
Resolvase, the product of the tnpR gene of the transposable element gamma delta, mediates a site-specific recombination between two copies of the element directly repeated on the same replicon. The resolution site, res, at which resolvase acts lies in the intercistronic region between the tnpA and tnpR genes. We have studied this site-specific recombination in vitro. In the absence of Mg2+, a resolvase-res complex is formed, which contains DNA molecules that have been cleaved at res. Our data suggest that in this complex resolvase is covalently attached to the 5' ends of the cleaved DNA, leaving free 3' hydroxyl groups. DNA cleavage is stimulated by the interaction of two res sites on the same substrate molecule and appears to be an intermediate step in normal res site recombination. We show that the DNA is cut within a region previously identified as containing the crossover point at the palindromic sequence 5'- (see formula in text) to generate 3' extensions of two bases.  相似文献   

12.
13.
Integrase can insert retroviral DNA into almost any site in cellular DNA; however, target site preferences are noted in vitro and in vivo. We recently demonstrated that amino acid 119, in the alpha2 helix of the central domain of the human immunodeficiency virus type 1 integrase, affected the choice of nonviral target DNA sites. We have now extended these findings to the integrases of a nonprimate lentivirus and a more distantly related alpharetrovirus. We found that substitutions at the analogous positions in visna virus integrase and Rous sarcoma virus integrase changed the target site preferences in five assays that monitor insertion into nonviral DNA. Thus, the importance of this protein residue in the selection of nonviral target DNA sites is likely to be a general property of retroviral integrases. Moreover, this amino acid might be part of the cellular DNA binding site on integrase proteins.  相似文献   

14.
Saccharomyces cerevisiae RAD59 gene is required for homologous recombination processes and normal level of resistance to ionizing radiation. To study the biochemical functions of Rad59, it was overproduced in yeast and purified to near homogeneity. Rad59 binds DNA, showing much higher affinity for ssDNA than dsDNA. Rad59 also anneals complementary DNA strands, and order of addition experiments indicate that maximal annealing efficiency is achieved when both complementary DNA strands are present upon addition of Rad59. Thus, Rad59 resembles its homolog Rad52 in being able to bind ssDNA and anneal complementary DNA strands. However, unlike Rad52, DNA annealing by Rad59 is not accelerated by the ssDNA binding factor RPA. DNA binding and strand annealing are likely to be important for the biological functions of Rad59 in general recombination and in the single-strand annealing pathway of recombination.  相似文献   

15.
Our comparison of deduced amino acid sequences for retroviral/retrotransposon integrase (IN) proteins of several organisms, including Drosophila melanogaster and Schizosaccharomyces pombe, reveals strong conservation of a constellation of amino acids characterized by two invariant aspartate (D) residues and a glutamate (E) residue, which we refer to as the D,D(35)E region. The same constellation is found in the transposases of a number of bacterial insertion sequences. The conservation of this region suggests that the component residues are involved in DNA recognition, cutting, and joining, since these properties are shared among these proteins of divergent origin. We introduced amino acid substitutions in invariant residues and selected conserved and nonconserved residues throughout the D,D(35)E region of Rous sarcoma virus IN and in human immunodeficiency virus IN and assessed their effect upon the activities of the purified, mutant proteins in vitro. Changes of the invariant and conserved residues typically produce similar impairment of both viral long terminal repeat (LTR) oligonucleotide cleavage referred to as the processing reaction and the subsequent joining of the processed LTR-based oligonucleotides to DNA targets. The severity of the defects depended upon the site and the nature of the amino acid substitution(s). All substitutions of the invariant acidic D and E residues in both Rous sarcoma virus and human immunodeficiency virus IN dramatically reduced LTR oligonucleotide processing and joining to a few percent or less of wild type, suggesting that they are essential components of the active site for both reactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The e65 pi; bri ru stock of Drosophila ananassae produced an extremely high rate of recombination in males when made heterozygous with any one of the wild type stocks. We analyzed and characterized the genetic factors which caused this phenomenon. We show that the second chromosome of the e65 pi; bri ru stock carries an enhancer of male recombination. The enhancer, En(2)-ep, is located between Om(2C) and Arc. The enhancement of meiotic recombination both in males and females was also observed at the specific region between Om(2C) and Arc on 2L. The magnitude of increased recombination was 30-40 fold in males and 13-30 fold in females. The relation between the hotspot of recombination in both sexes and the enhancer of male recombination is discussed.  相似文献   

17.
The Xer site-specific recombination system of Escherichia coli is involved in the stable inheritance of circular replicons. Multimeric replicons, produced by homologous recombination, are converted to monomers by the action of two related recombinases XerC and XerD. Site-specific recombination at a locus, dif, within the chromosomal replication terminus region is thought to convert dimeric chromosomes to monomers, which can then be segregated prior to cell division. The recombinases XerC and XerD bind cooperatively to dif, where they catalyse recombination. Chemical modification of specific bases and the phosphate-sugar backbone within dif was used to investigate the requirements for binding of the recombinases. Site-directed mutagenesis was then used to alter bases implicated in recombinase binding. Characterization of these mutants by in vitro recombinase binding and in vivo recombination, has demonstrated that the cooperative interactions between XerC and XerD can partially overcome DNA alterations that should interfere with specific recombinase-dif interactions.  相似文献   

18.
The phosphorylation state of alphaB-crystallin accumulated in the brains of two patients with Alexander's disease (one infantile and one juvenile type) was determined by means of SDS-PAGE or isoelectric focusing of soluble and insoluble fractions of brain extracts and subsequent western blot analysis with specific antibodies against alphaB-crystallin and each of three phosphorylated serine residues. The level of mammalian small heat shock protein of 25-28 kDa (Hsp27) in the same fraction was also estimated by western blot analysis. The majority of alphaB-crystallin was detected in the insoluble fraction of brain homogenates and phosphorylation was preferentially observed at Ser-59 in both cases. A significant level of phosphorylation at Ser-45 but not Ser-19 was also detected. Hsp27 was found at considerable levels in the insoluble fractions. alphaB-crystallin and phosphorylated forms were detected in the cerebrospinal fluid of patient with the juvenile type. AlphaB-crystallin and phosphorylated forms were also detectable at considerable levels in the insoluble fraction of brain homogenates from patients with Alzheimer's disease and aged controls. The phosphorylation site was mostly at Ser-59 in all cases. Immunohistochemically, alphaB-crystallin was stained in Rosenthal fibers in brains of patients with Alexander's disease and their peripheral portions were immunostained with antibodies recognizing phosphorylated Ser-59. These results indicate that the major phosphorylation site in alphaB-crystallin in brains of patients with Alexander's disease or Alzheimer's disease as well as in aged controls is Ser-59.  相似文献   

19.
A family with a fragile site on chromosome 6 at band p23 was examined for recombination between the fragile site and HLA. Recombination was observed in four of the 20 offspring in whom it could occur. The estimate of the genetic length of chromosome between the fragile site and HLA is 20 centimorgans (cM) with a lower 95% probability limit of 8.5 cM, placing HLA proximal to the midpoint of 6p22. The most likely regional localization is at 6p21.3, which agrees closely with methods that do not involve recombination with the fragile site. This fragile site does not measurably disrupt recombination frequency, and the allele predisposing to expression of the fragile site is situated at the fragile site.  相似文献   

20.
Mutant lambda integrases catalyze site-specific DNA recombination in the absence of accessory factors IHF, XIS, and negative DNA supercoiling. Here we investigate the effects that a human cellular environment exerts on these reactions in order to (i) gain further insights into mechanistic aspects of recombination in eukaryotic cells and (ii) to further develop the Int system for biotechnological applications. First, we compared intra- and intermolecular integrative as well as excisive recombination pathways on episomal substrates after co-transfection with recombinase expression vectors. Our results demonstrate that, within 24 hours after transfection, intermolecular recombination by mutant integrase is at least as efficient as intramolecular recombination. Second, a significant intermolecular recombination activity was observed between two copies of a recombination site containing only the 21 bp comprising core-type DNA sequence. This basic activity was stimulated several-fold when arm-type DNA sequences were present in addition to core sites. Therefore, one recombination pathway in human cells involves mutant integrases bound solely at core sites, which is reminiscent of the Flp/FRT and Cre/loxP pathways. The stimulatory effect of arm-type sequences could be explained by an increase in integrase concentration in the vicinity of core sites. We show, in addition, that an N-terminal truncated mutant integrase exhibited only a very weak recombinogenic activity in a eukaryotic background. This result strengthens a functional role for the N-terminal domain in recombination in addition to its arm-type DNA-binding activity. Finally, we demonstrate that low level integrative recombination by wild-type integrase is stimulated when purified integration host factor is co-transfected. This corroborates our previous conclusion that sufficient amounts of eukaryotic protein co-factors, which could functionally replace IHF, are not present in human cells. It also provides a potential means to control site-specific recombination in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号