首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of canine cardiac sarcolemmal vesicles with phospholipase D resulted in a large stimulation (up to 400%) of Na+-Ca2+ exchange activity. The phospholipase D treatment decreased the apparent Km (Ca2+) for the initial rate of Nai+-dependent Ca2+ uptake from 18.2 +/- 2.6 to 6.3 +/- 0.3 microM. The Vmax increased from 18.0 +/- 3.6 to 31.5 +/- 3.6 nmol of Ca2+/mg of protein/s. The effect was specific for Na+-Ca2+ exchange; other sarcolemmal transport enzymes ((Na+, K+)-ATPase; ATP-dependent Ca2+ transport) are inhibited by incubation with phospholipase D. Phospholipase D had little effect on the passive Ca2+ permeability of the sarcolemmal vesicles. After treatment with 0.4 unit/ml of phospholipase D (20 min, 37 degrees C), the sarcolemmal content of phosphatidic acid rose from 0.9 +/- 0.2 to 8.9 +/- 0.4%; simultaneously, Na+-Ca2+ exchange activity increased 327 +/- 87%. It is probable that the elevated phosphatidic acid level is responsible for the enhanced Na+-Ca2+ exchange activity. In a previous study (Philipson, K. D., Frank, J. S., and Nishimoto, A. Y. (1983) J. Biol. Chem. 258, 5905-5910), we hypothesized that negatively charged phospholipids were important in Na+-Ca2+ exchange, and the present results are consistent with this hypothesis. Stimulation of Na+-Ca2+ exchange by phosphatidic acid may be important in explaining the Ca2+ influx which accompanies the phosphatidylinositol turnover response which occurs in a wide variety of tissues.  相似文献   

2.
The deduced amino acid sequence of the cardiac sarcolemmal Na(+)-Ca2+ exchanger has a region which could represent a calmodulin binding site. As calmodulin binding regions of proteins often have an autoinhibitory role, a synthetic peptide with this sequence was tested for functional effects on Na(+)-Ca2+ exchange activity. The peptide inhibits the Na(+)-dependent Ca2+ uptake (KI approximately 1.5 microM) and the Nao(+)-dependent Ca2+ efflux of sarcolemmal vesicles in a noncompetitive manner with respect to both Na+ and Ca2+. The peptide is also a potent inhibitor (KI approximately 0.1 microM) of the Na(+)-Ca2+ exchange current of excised sarcolemmal patches. The binding site for the peptide on the exchanger is on the cytoplasmic surface of the membrane. The exchanger inhibitory peptide binds calmodulin with a moderately high affinity. From the characteristics of the inhibition of the exchange of sarcolemmal vesicles, we deduce that only inside-out sarcolemmal vesicles participate in the usual Na(+)-Ca2+ exchange assay. This contrasts with the common assumption that both inside-out and right-side-out vesicles exhibit exchange activity.  相似文献   

3.
Modification of the cholesterol content of highly purified cardiac sarcolemma from dog ventricles was accomplished by incubation with phosphatidylcholine liposomes containing various amounts of cholesterol. The degree of cholesterol enrichment could be varied by changing the liposomal cholesterol/phospholipid ratio or varying the liposome-membrane incubation time. Na+-Ca2+ exchange measured in cholesterol-enriched sarcolemmal vesicles was increased up to 48% over control values. The stimulation of Na+-Ca2+ exchange was associated with an increased affinity of the exchanger for Ca2+ (Km = 17 microM compared with Km = 22 microM for control preparations). Na+-Ca2+ exchange measured in cholesterol-depleted membrane preparations was decreased by 15%. This depressed activity was associated with a decreased affinity of the exchanger for Ca2+ (Km = 27 microM). These changes were not due to either a change in membrane permeability to Ca2+ or an increase in the amount of Ca2+ bound to sarcolemmal vesicles. The stimulating effect of cholesterol enrichment was specific to the Na+-Ca2+ exchange process since sarcolemmal Ca2+-Mg2+ ATPase activity was depressed 40% by cholesterol enrichment. Further, K+-p-nitrophenylphosphatase and Na+-K+ ATPase activities were depressed in both cholesterol-depleted and cholesterol-enriched sarcolemmal vesicles. In situ oxidation of membrane cholesterol completely eliminated Na+-Ca2+ exchange. These results suggest that cholesterol is intimately associated with Na+-Ca2+ exchange and may interact with the exchange protein and modulate its activity.  相似文献   

4.
Na+-Ca2+ exchange activity in cardiac sarcolemmal vesicles is known to be sensitive to charged, membrane lipid components. To examine the interactions between membrane components and the exchanger in more detail, we have solubilized and reconstituted the Na+-Ca2+ exchanger into membranes of defined lipid composition. Our results indicate that optimal Na+-Ca2+ exchange activity requires the presence of certain anionic phospholipids. In particular, phosphatidylserine (PS), cardiolipin, or phosphatidic acid at 50% by weight results in high Na+-Ca2+ exchange activity, whereas phosphatidylinositol and phosphatidylglycerol provide a poor environment for exchange. In addition, incorporation of cholesterol at 20% by weight greatly facilitates Na+-Ca2+ exchange activity. Thus, for example, an optimal lipid environment for Na+-Ca2+ exchange is phosphatidylcholine (PC, 30%)/PS (50%)/cholesterol (20%). Na+-Ca2+ exchange activity is also high when cardiac sarcolemma is solubilized and then reconstituted into asolectin liposomes. We fractionated the lipids of asolectin into subclasses for further reconstitution studies. When sarcolemma is reconstituted into vesicles formed from the phospholipid component of asolectin, Na+-Ca2+ exchange activity is low. When the neutral lipid fraction of asolectin (including sterols) is also included in the reconstitution medium, Na+-Ca2+ exchange activity is greatly stimulated. This result is consistent with the requirement for cholesterol described above. Proteinase treatment, high pH, intravesicular Ca2+ and dodecyl sulfate all stimulate Na+-Ca2+ exchange in native sarcolemmal vesicles. We examined the effects of these interventions on exchange activity in reconstituted vesicles of varying lipid composition. In general, Na+-Ca2+ exchange could be stimulated only when reconstituted into vesicles of a suboptimal lipid composition. That is, when reconstituted into asolectin or PC/PS/cholesterol (30:50:20), the exchanger is already in an activated state and can no longer be stimulated. The one exception was that the Na+-Ca2+ exchanger responded to altered pH in an identical manner, independent of vesicle lipid composition. The mechanism of action of altered pH on the exchanger thus appears to be different from other interventions.  相似文献   

5.
The Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles can catalyze the exchange of Ca2+ on either side of the sarcolemmal membrane for Na+ on the opposing side. Little is known regarding the relative affinities of Na+ and Ca2+ for exchanger binding sites on the intra- and extracellular membrane surfaces. We have previously reported (Philipson, K.D. and Nishimoto, A.Y. (1982) J. Biol. Chem. 257, 5111-5117) a method for measuring the Na+-Ca2+ exchange of only the inside-out vesicles in a mixed population of sarcolemmal vesicles (predominantly right-side-out). We concluded that the apparent Km(Ca2+) for Na+i-dependent Ca2+ uptake was similar for inside-out and right-side-out vesicles. In the present study, we examine in detail Na+o-dependent Ca2+ efflux from both the inside-out and the total population of vesicles. To load vesicles with Ca2+ prior to measurement of Ca2+ efflux, four methods are used: 1, Na+-Ca2+ exchange; 2, passive Ca2+ diffusion; 3, ATP-dependent Ca2+ uptake; 4, exchange of Ca2+ for Na+ which has been actively transported into vesicles by the Na+ pump. The first two methods load all sarcolemmal vesicles with Ca2+, while the latter two methods selectively load inside-out vesicles with Ca2+. We are able to conclude that the dependence of Ca2+ efflux on the external Na+ concentration is similar in inside-out and right-side-out vesicles. Thus the apparent Km(Na+) values (approximately equal to 30 mM) of the Na+-Ca2+ exchanger are similar on the two surfaces of the sarcolemmal membrane. In other experiments, external Na+ inhibited the Na+i-dependent Ca2+ uptake of the total population of vesicles much more potently than that of the inside-out vesicles. Apparently Na+ can compete for the Ca2+ binding site more effectively on the external surface of right-side-out than on the external surface of inside-out vesicles. Thus, although affinities for Na+ or Ca2+ (in the absence of the other ion) appear symmetrical, the interactions between Na+ and Ca2+ at the two sides of the exchanger are not the same. The Na+-Ca2+ exchanger is not a completely symmetrical transport protein.  相似文献   

6.
We have investigated temperature dependence of Ca2+ uptake by the cardiac sarcolemmal Na(+)-Ca2+ exchanger from dog, rabbit and bullfrog. In native rabbit sarcolemmal vesicles, Ca2+ affinity of the Na(+)-Ca2+ exchanger is unchanged from 7 to 37 degrees C; however, the initial velocity of Ca2+ uptake declines much more steeply below 22 degrees C than above 22 degrees C. In native dog sarcolemma, the temperature dependence of Na(+)-Ca2+ exchange velocity is similar to that of native rabbit. However, in frog heart the velocity of Na(+)-Ca2+ exchange declines much more slowly with decreasing temperature at both temperature ranges. Reconstitution of the Na(+)-Ca2+ exchanger into artificial lipid vesicles consisting of either asolectin or phosphatidylserine, phosphatidylcholine, and cholesterol has little effect on temperature dependence of Na(+)-Ca2+ exchange velocity in any of the three species. We conclude that the lesser temperature sensitivity of the cardiac sarcolemmal Na(+)-Ca2+ exchanger of a poikilothermic species is at least partly an intrinsic property of the transport protein.  相似文献   

7.
Saponins can both permeabilize cell plasma membranes and cause positive inotropic effects in isolated cardiac muscles. Different saponins vary in their relative abilities to cause each effect suggesting that different mechanisms of action may be involved. To investigate this possibility, we have compared the effects of seven different saponins on the passive Ca2+ permeability and Na+-Ca2+ exchange activity of isolated canine cardiac sarcolemmal membranes. Saponins having hemolytic activity reversibly increased the passive efflux of Ca2+ from sarcolemmal vesicles preloaded with 45Ca2+ with the following order of potency: echinoside-A greater than echinoside-B greater than holothurin-A greater than holothurin-B greater than sakuraso-saponin. Ginsenoside-Rd and desacyl-jego-saponin, which lack hemolytic activity, had no significant effect on this variable. The saponins also stimulated Na+-Ca2+ exchange activity measured as Na+-dependent Ca2+ uptake by sarcolemmal vesicles. Ginsenoside-Rd and desacyl-jego-seponin, which did not affect passive Ca2+ permeability, stimulated the uptake, while in contrast, echinoside-A and -B only slightly increased or decreased this latter variable. Thus, the abilities of these compounds to enhance Na+-Ca2+ exchange activity seem to be inversely related to their abilities to increase the Ca2+ permeability. Effects by the echinosides on Na+-Ca2+ exchange may be masked by the loss of Ca2+ from the vesicles due to the increased permeability. These results suggest that the saponins interact with membrane constituent(s) that can influence the passive Ca2+ permeability and the Na+-Ca2+ exchange activity of cardiac sarcolemmal membranes.  相似文献   

8.
We have previously reported that anionic phospholipids (Philipson, K.D., and Nishimoto, A.Y. (1984) J. Biol. Chem. 259, 16-19) and other anionic amphiphiles (Philipson, K.D. (1984) J. Biol. Chem. 259, 13999-14002) stimulate Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. To further these studies, we have now investigated the effects of a variety of fatty acids on both Na+-Ca2+ exchange and passive Ca2+ permeability. Na+-Ca2+ exchange was stimulated by fatty acids by up to 150%. Unsaturated fatty acids were more potent than saturated fatty acids, and the stimulation was primarily due to a decrease in the apparent KM (Ca2+). There was a positive correlation between the ability of a fatty acid to stimulate Na+-Ca2+ exchange and to increase passive Ca2+ permeability. The methyl esters of fatty acids had no effects on either exchange or permeability indicating the importance of anionic charge. We conclude that the combination of local lipid disorder and anionic charge regulate Na+-Ca2+ exchange. Perturbations of the bilayer hydrophobic region and increased negative surface charge are both required for fatty acids to increase passive Ca2+ flux. Na+-Ca2+ exchange is stimulated when the ratio of membrane free fatty acid to phospholipid is about 5%. This level of fatty acid is achieved during 1 h of myocardial ischemia (Chien, K. R., Han, A., Sen, A., Buja, L. M., and Willerson, J. T. (1984) Circ. Res. 54, 313-322), indicating that ischemia could induce altered sarcolemmal Ca2+ transport due to fatty acid accumulation.  相似文献   

9.
We examine the effects of 5-, 12- and 16-doxylstearic acids on the Na+-Ca2+ exchange and passive Ca2+ permeability of cardiac sarcolemmal vesicles. Stearic acid is a weak stimulator of Na+-Ca2+ exchange. A doxyl moiety potentiates stimulation with the order of increasing potency being 5-, 12- and then 16-doxylstearic acid. Stearic acid has little effect on vesicle Ca2+ permeability but again the doxylstearates are more effective. The sequence of potency is reversed, however, from that for increasing Na+-Ca2+ exchange. 5-Doxylstearic acid most markedly exchanges passive Ca2+ flux followed by the 12-, and then 16-doxylstearic acids. Methyl esters of the doxylstearates have no effect on either Na+-Ca2+ exchange or Ca2+ permeability. We model the results as follows. For a fatty acid to stimulate Na+-Ca2+ exchange activity, an anionic charge is required to interact with the exchanger protein at the membrane surface. Stimulation is potentiated by a perturbation (such as provided by a doxyl group) within the lipid bilayer. The perturbation is most effective at a location towards the center of the bilayer. To increase passive Ca2+ permeability an anionic charge is again essential. Disorder within the bilayer is also important, but now the most important site is near the membrane surface. Results of experiments with linolenic and gamma-linolenic acid and previous studies with other fatty acids also support this model.  相似文献   

10.
The effect of phosphatidylethanolamine N-methylation on Na+-Ca2+ exchange was studied in sarcolemmal vesicles isolated from rat heart. Phosphatidylethanolamine N-methylation following incubation of membranes with S-adenosyl-L-methionine, a methyl donor for the enzymatic N-methylation, inhibited Nai+-dependent Ca2+ uptake by about 50%. The N-methylation reaction did not alter the passive permeability of the sarcolemmal vesicles to Na+ and Ca2+ and did not modify the electrogenic characteristics of the exchanger. The depressant effect of phosphatidylethanolamine N-methylation on Nai+-dependent Ca2+ uptake was prevented by S-adenosyl-L-homocysteine, an inhibitor of the N-methylation. Pretreatment of sarcolemma with methyl acetimidate hydrochloride, an amino-group-blocking agent, also prevented methylation-induced inhibition of Ca2+ uptake. In the presence of exogenous phospholipid substrate, the phospholipid N-methylation process in methyl-acetimidate-treated sarcolemmal vesicles was restored and the inhibitory effect on Ca2+ uptake was evident. These results suggest that phosphatidylethanolamine N-methylation influences the heart sarcolemmal Na+-Ca2+ exchange system.  相似文献   

11.
We have examined the influence of different sterols and phospholipids on the activities of the cardiac sarcolemmal Na+-Ca2+ exchanger and Na+,K+-ATPase and the sarcoplasmic reticular Ca2+-ATPase in reconstituted proteoliposomes. When either the solubilized Na+-Ca2+ exchanger or the Na+,K+-ATPase is reconstituted into phosphatidylcholine (PC):phosphatidylserine (30:50 by weight) vesicles, high cholesterol levels (20% by weight) are required for activity to be expressed. This sterol requirement is highly specific for cholesterol. Several cholesterol analogues with minor structural changes are unable to support Na+-Ca2+ exchange or Na+,K+-ATPase activities. When solubilized sarcolemma is reconstituted into PC:cardiolipin vesicles, however, the requirement for cholesterol is lost. Substantial activity can be obtained in the complete absence of cholesterol or in the presence of several cholesterol analogues. Thus, sterol/protein interactions can be highly dependent on the phospholipid environment. In contrast, the skeletal muscle sarcoplasmic reticular Ca2+-ATPase functions equally well in the presence or absence of cholesterol after reconstitution into either PC:phosphatidylserine or PC:cardiolipin proteoliposomes. Phospholipid requirements of the transporters were also examined. The sarcolemmal Na+-Ca2+ exchanger, Na+,K+-ATPase, and the sarcoplasmic reticular Ca2+-ATPase all function optimally in the presence of phosphatidylserine or cardiolipin after reconstitution. Thus, the sarcolemmal cation transporters have similar sterol and phospholipid requirements and may have structural similarities in their hydrophobic regions. The sarcoplasmic reticular Ca2+ pump evolved in a low cholesterol membrane and has different lipid interactions. These findings may have general applicability to other plasma membrane and endoplasmic reticular enzymes.  相似文献   

12.
We have examined the effect of membrane methylation on the Na+-Ca2+ exchange activity of canine cardiac sarcolemmal vesicles using S-adenosyl-L-methionine as methyl donor. Methylation leads to approximately 40% inhibition of the initial rate of Nai+-dependent Ca2+ uptake. The inhibition is due to a lowering of the Vmax for the reaction. The inhibition is not due to an effect on membrane permeability and is blocked by S-adenosyl-L-homocysteine, an inhibitor of methylation reactions. The following experiments indicated that inhibition of Na+-Ca2+ exchange was due to methylation of membrane protein and not due to methylated phosphatidylethanolamine (PE) compounds (i.e., phosphatidyl-N-monomethylethanolamine (PMME) or phosphatidyl-N,N'-dimethylethanolamine (PDME]: (1) We solubilized sarcolemma and reconstituted activity into vesicles containing no PE. The inhibition by S-adenosyl-L-methionine was not diminished in this environment. (2) We reconstituted sarcolemma into vesicles containing PMME or PDME. These methylated lipid components had no effect on Na+-Ca2+ exchange activity. (3) We verified that many membrane proteins, probably including the exchanger, become methylated.  相似文献   

13.
The Na+-Ca2+ exchanger was extracted from cardiac sarcolemmal vesicles and reconstituted into phospholipid vesicles by a cholate-dialysis method. Reconstitution was attempted with different phospholipids. Phosphatidylcholine alone was ineffective, whereas phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) showed high activity, but a significant Ca2+ uptake in the absence of Na+ gradient. Optimal reconstitution was obtained with a mixture of phosphatidylcholine and phosphatidylserine (9:1, mol/mol). The reconstituted proteoliposomes showed an ouabain-sensitive (Na+ + K+)-ATPase activity and a Na+-Ca2+ exchange with a specific activity comparable to that of the original vesicles. The specificity toward Na+ was also recovered. A partial purification of the exchanger was obtained by the method of transport-specificity fractionation ( Goldin , S.M. and Rhoden , V. (1978) J. Biol. Chem. 253, 2575-2583). When proteoliposomes were reconstituted with sodium oxalate inside and incubated with calcium in the presence of an outwardly directed Na+ gradient, the vesicles containing the Na+-Ca2+ exchanger specifically accumulated calcium which precipitated inside as calcium oxalate. The resulting increase in density allowed separation of the proteoliposomes containing the Na+-Ca2+ exchanger from the rest of the vesicles on a sucrose density gradient.  相似文献   

14.
Two mechanisms of passive Ca2+ transport, Na+-Ca2+ exchange and Ca2+-Ca2+ exchange, were studied using highly-purified dog heart sarcolemmal vesicles. About 80% of the Ca2+ accumulated by Na+-Ca2+ exchange or Ca2+-Ca2+ exchange could be released as free Ca2+, while up to 20% was probably bound. Na+-Ca2+ exchange was simultaneous, coupled countertransport of Na+ and Ca2+. The movement of anions during Na+-Ca2+ exchange did not limit the initial rate of Na+-Ca2+ exchange. Na+-Ca2+ exchange was electrogenic, with a reversal potential of about -105 mV. The apparent flux ratio of Na+-Ca2+ exchange was 4 Na+:1 Ca2+. Coupled cation countertransport by the Na+-Ca2+ exchange mechanism required a monovalent cation gradient with the following sequence of ion activation: Na+ much greater than Li+ greater than Cs+ greater than K+ greater than Rb+. In contrast to Na+-Ca2+ exchange, Ca2+-Ca2+ exchange did not require a monovalent cation gradient, but required the presence of Ca2+ plus a monovalent cation on both sides of the vesicle membrane. The sequence of ion activation of Ca2+-Ca2+ exchange was: K+ much greater than Rb+ greater than Na+ greater than Li+ greater than Cs+. Na+ inhibited Ca2+-Ca2+ exchange when Ca2+-Ca2+ exchange was supported by another monovalent cation. Both Na+-Ca2+ exchange and Ca2+-Ca2+ exchange were inhibited, but with different sensitivities, by external MgCl2, quinidine, or verapamil.  相似文献   

15.
Cardiac contractile function is dependent on the integrity and function of the sarcolemmal membrane. Swimming exercise training is known to increase cardiac contractile performance. The purpose of the present study was to examine whether a swimming exercise program would alter sarcolemmal enzyme activity, ion flux, and composition in rat hearts. After approximately 11 wk of exercise training, cardiac myosin and actomyosin Ca2+-adenosinetriphosphatase (ATPase) activity was significantly higher in exercised rat hearts than in sedentary control rat hearts. Glycogen content was increased in plantaris and gastrocnemius muscles from exercised animals as was succinic dehydrogenase activity in gastrocnemius muscle of exercised rats in comparison to sedentary rat preparations. Sarcolemmal vesicles were isolated from hearts of exercise-trained and control rats. Sarcolemmal Na+-K+-ATPase and K+-p-nitrophenylphosphatase activities, Na+-Ca2+ exchange, and passive Ca2+ binding did not differ between the two groups. ATP-dependent Ca2+ uptake and 5'-nucleotidase activity were elevated in the cardiac sarcolemmal vesicles isolated from exercised animals compared with sedentary control rats. Sarcolemmal phospholipid composition was not altered by the exercise training. Our results demonstrate that swimming training in rats does not affect most parameters of cardiac sarcolemmal function or composition. However, the elevated sarcolemmal Ca2+ pump activity in exercised rats may help to reduce intracellular Ca2+ and augment cardiac relaxation rates. The enhanced 5'-nucleotidase activity may stimulate adenosine production, which could affect myocardial blood flow. The present results further our knowledge on the subcellular response of the heart to swimming training in the rat.  相似文献   

16.
The role of dibutyryl 3',5'-cyclic adenosine monophosphate (dibutyryl cAMP) as putative second messenger for parathyroid hormone (PTH) in regulating canine proximal tubular basolateral membrane Na+-Ca2+ exchange and passive calcium permeability was assessed, as was the nature of this passive calcium permeability. Dibutyryl cAMP (50 mg) infused in vivo over 30 min increased fractional phosphate excretion from 4.9 +/- 1.8% to 20.5 +/- 4.6%, P less than 0.05, n = 6, but had no effect on either passive Ca2+ efflux or sodium-stimulated Ca2+ efflux from Ca2+-preloaded basolateral membrane vesicles (BLMV). Both of these mechanisms have been previously shown to be stimulated by PTH. Further studies were performed to investigate the mechanism of the passive calcium flux. Calcium uptake by BLMV was blocked by lanthanum (La3+) but not by the calcium-channel blocker verapamil. La3+ blocked efflux of Ca2+ from preloaded vesicles when it was placed in the external solution. This La3+-blockable efflux was larger in potassium equivalent BLMV prepared from normal dogs than in BLMV prepared from thyroparathyroidectomized dogs. Benzamil produced 50% inhibition of sodium-stimulated Ca2+ uptake at 250 microM whereas neither amiloride nor diltiazem achieved 50% inhibition at the maximal doses studied. Benzamil, 1 mM, had no effect on passive calcium efflux and neither did the substitution of sucrose for potassium, which has been shown to affect Ca2+-Ca2+ exchange by the Na+-Ca2+ exchanger. This suggests that the calcium flux under potassium equivalent conditions was not mediated by Ca2+-Ca2+ exchange by the Na+-Ca2+ exchanger. These results demonstrate that the basolateral membrane of proximal tubular cells possesses both a Na+-Ca2+ exchanger inhibitable by benzamil and a passive calcium permeability not inhibited by benzamil nor by verapamil but by La3+. Neither of these two mechanisms of calcium flux was affected by dibutyryl cAMP whereas both have been shown to be stimulated by PTH.  相似文献   

17.
This work shows the existence of a phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) bound form of the cardiac sarcolemmal Na+/Ca2+ exchanger. That was demonstrated in Western blots and cross-immunoprecipitation by using specific antibodies against the NCX1 exchanger (NCX1) and against PtdIns-4,5-P2. In addition, PtdIns-4,5-P2 bound to the Na+/Ca2+ exchanger and the Na+/Ca2+ exchange fluxes displayed a similar MgATP regulation: (a) both increase by 100-130% when membrane vesicles are incubated (15-20 s at 37 degrees C) with 1 mM MgATP and 1 microM Ca2+ (b) in the presence of 100 microM Ca2+, MgATP fails to stimulate the exchange fluxes and does not modify the levels of PtdIns-4,5-P2 bound to the exchanger. In addition, in the absence of Ca2+, the net synthesis of total membrane PtdIns-4,5-P2 is greatly reduced compared with that in the presence of 1 microM Ca2+. Furthermore, in the absence of Ca2+ there is no effect of MgATP on the levels of PtdIns-4,5-P2 bound to the exchanger. These results indicate that, in bovine heart, MgATP-stimulation of Na+/Ca2+ exchange is associated with intracellular Ca2+-dependent levels of PtdIns-4,5-P2 bound to the exchanger molecule.  相似文献   

18.
Purification of the cardiac Na+-Ca2+ exchange protein   总被引:4,自引:0,他引:4  
We have used fractionation procedures to enrich solubilized cardiac sarcolemma in the Na+-Ca2+ exchange protein. Sarcolemma is extracted with an alkaline medium to remove peripheral proteins and is then solubilized with decylmaltoside. Next, the exchanger is applied to DEAE-Sepharose and eluted with high salt. The DEAE fraction is applied to WGA-agarose, and a small fraction of protein, enriched in the exchanger, can be eluted by changing the detergent to Triton X-100. This fraction is reconstituted into asolectin proteoliposomes for measurement of Na+-Ca2+ exchange activity and gel electrophoresis. The purified fraction has a Na+-Ca2+ exchange activity of 600 nmol Ca2+/mg of protein per s at 10 microM Ca2+ and a purification factor of about 30 as compared with control reconstituted sarcolemmal vesicles. Ca2+-Ca2+ exchange and Na+-Ca2+ exchange activities were both present in the same final reconstituted vesicles indicating that the same protein is responsible for both transport activities. SDS-PAGE reveals two prominent protein bands at 70 and 120 kDa. After mild chymotrypsin treatment (1 microgram/ml), there is no loss of exchange activity, but the 120 kDa band disappears and the 70 kDa band becomes more dense. This suggests that the 70 kDa band is due to an active proteolytic fragment of the 120 kDa protein. Under non-reducing gel conditions, only a single protein band is seen with an apparent molecular weight of 160 kDa. Antibodies to the purified exchanger preparation are able to immunoprecipitate exchange activity and confirm that the 70 kDa protein derives from the 120 kDa protein. We propose that both the 70 and 120 kDa proteins are associated with the Na+-Ca2+ exchanger.  相似文献   

19.
The role of intracellular Ca2+ as essential activator of the Na+-Ca2+ exchange carrier was explored in membrane vesicles containing 67% right-side-out and 10% inside-out vesicles, isolated from squid optic nerves. Vesicles containing 100 microM free calcium exhibited a 2-fold increase in the initial rate of Na+i-dependent Ca2+ uptake as compared with vesicles where intravesicular calcium was chelated by 2 mM EGTA or 10 mM HEDTA. The activatory effect exerted by intravesicular Ca2+ on the reverse mode of Na+-Ca2+ exchange (i.e. Na+i-Ca2+o exchange) is saturated at about 100 microM Ca2+i and displays an apparent K 1/2 of 12 microM. Intravesicular Ca2+ produced activation of Na+i-Ca2+i exchange activity rather than an increase in Ca2+ uptake due to Ca2+-Ca2+ exchange. The presence of Ca2+i was essential for the Na+i-dependent Na+ influx, a partial reaction of the Na+-Ca2+ exchanger. In fact, the Na+ influx levels in vesicles loaded with 2 mM EGTA were close to those expected from diffusional leak while in vesicles containing Ca2+i an additional Na+-Na+ exchange was measured. The results suggest that in nerve membrane vesicles Ca2+ at the inner aspect of the membrane acts as an activator of the Na+-Ca2+ exchange system.  相似文献   

20.
1. Taurine, but not GABA, beta-alanine and glycine, inhibited Na(+)-dependent Ca2+ uptake in bovine cardiac sarcolemmal membrane vesicles in a dose-dependent manner. 2. The inhibition of Na(+)-dependent Ca2+ uptake was noncompetitive with respect to Ca2+ concentration. 3. The inhibitory effect of taurine on the exchange was also observed in cardiac sarcolemmal vesicles prepared from guinea pig, but not from rat. 4. Taurine did not affect Na(+)-dependent Ca2+ efflux nor ATP-dependent Ca2+ uptake in the bovine cardiac membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号