首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2D vanadium carbide MXene containing surface functional groups (denoted as V2CTx , where Tx are surface functional groups) is synthesized and studied as anode material for Na‐ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium are studied using a combination of synchrotron based X‐ray diffraction, hard X‐ray absorption near edge spectroscopy (XANES), and soft X‐ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage and the reversible capacity of V2CTx during sodiation/desodiation process are provided through V K ‐edge XANES and V L 2,3‐edge sXAS results. A correlation between the CO32? content and the Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K ‐edge in sXAS results implies that some additional charge storage reactions may take place between the Na+‐intercalated V2CTx and the carbonate‐based nonaqueous electrolyte. The results of this study provide valuable information for the further studies on V2CTx as anode material for Na‐ion batteries and capacitors.  相似文献   

2.
X‐ray microscopy can provide unique chemical, electronic, and structural insights into perovskite materials and devices leveraging bright, tunable synchrotron X‐ray sources. Over the last decade, fundamental understanding of halide perovskites and their impressive performance in optoelectronic devices has been furthered by rigorous research regarding their structural and chemical properties. Herein, studies of perovskites are reviewed that have used X‐ray imaging, spectroscopy, and scattering microscopies that have proven valuable tools toward understanding the role of defects, impurities, and processing on perovskite material properties and device performance. Together these microscopic investigations have augmented the understanding of the internal workings of perovskites and have helped to steer the perovskite community toward promising directions. In many ways, X‐ray microscopy of perovskites is still in its infancy, which leaves many exciting paths unexplored including new ptychographic, multimodal, in situ, and operando experiments. To explore possibilities, pioneering X‐ray microscopy along these lines is briefly highlighted from other semiconductor systems including silicon, CdTe, GaAs, CuInxGa1?xSe2, and organic photovoltaics. An overview is provided on the progress made in utilizing X‐ray microscopy for perovskites and present opportunities and challenges for future work.  相似文献   

3.
Potassium‐ion batteries (PIBs) are an emerging, affordable, and environmentally friendly alternative to lithium‐ion batteries, with their further development driven by the need for suitably performing electrode materials capable of reversibly accommodating the relatively large K+. Layer‐structured manganese oxides are attractive as electrodes for PIBs, but suffer from structural instability and sluggish kinetics of K+ insertion/extraction, leading to poor rate capability. Herein, cobalt is successfully introduced at the manganese site in the KxMnO2 layered oxide electrode material and it is shown that with only 5% Co, the reversible capacity increases by 30% at 22 mA g‐1 and by 92% at 440 mA g‐1. In operando synchrotron X‐ray diffraction reveals that Co suppresses Jahn–Teller distortion, leading to more isotropic migration pathways for K+ in the interlayer, thus enhancing the ionic diffusion and consequently, rate capability. The detailed analysis reveals that additional phase transitions and larger volume change occur in the Co‐doped material as a result of layer gliding, with these associated with faster capacity decay, despite the overall capacity remaining higher than the pristine material, even after 500 cycles. These results assert the importance of understanding the detailed structural evolution that underpins performance that will inform the strategic design of electrode materials for high‐performance PIBs.  相似文献   

4.
Solar‐intercalation batteries, which are able to both harvest and store solar energy within the electrodes, are a promising technology for the more efficient utilization of intermittent solar radiation. However, there is a lack of understanding on how the light‐induced intercalation reaction occurs within the electrode host lattice. Here, an in operando synchrotron X‐ray diffraction methodology is introduced, which allows for real‐time visualization of the structural evolution process within a solar‐intercalation battery host electrode lattice. Coupled with ex situ material characterization, direct correlations between the structural evolution of MoO3 and the photo‐electrochemical responses of the solar‐intercalation batteries are established for the first time. MoO3 is found to transform, via a two‐phase reaction mechanism, initially into a sodium bronze phase, Na0.33MoO3, followed by the formation of solid solutions, NaxMoO3 (0.33 < x < 1.1), on further photointercalation. Time‐resolved correlations with the measured voltages indicate that the two‐phase evolution reaction follows zeroth‐order kinetics. The insights achieved from this study can aid the development of more advanced photointercalation electrodes and solar batteries with greater performances.  相似文献   

5.
Recent advances in high‐resolution 3D X‐ray computed tomography (CT) allow detailed, non‐destructive 3D structural mapping of a complete lithium‐ion battery. By repeated 3D image acquisition (time lapse CT imaging) these investigations of material microstructure are extended into the fourth dimension (time) to study structural changes of the device in operando. By digital volume correlation (DVC) of successive 3D images the dimensional changes taking place during charge cycling are quantified at the electrode level and at the Mn2O4 particle scale. After battery discharging, the extent of lithiation of the manganese (III/IV) oxide grains in the electrode is found to be a function of the distance from the battery terminal with grains closest to the electrode/current collector interface having the greatest expansion (≈30%) and grains furthest from the current collector and closest to the counter electrode showing negligible dilation. This implies that the discharge is limited by electrical conductivity. This new CT+DVC technique is widely applicable to the 3D exploration of the microstructural degradation processes for a range of energy materials including fuel cells, capacitors, catalysts, and ceramics.  相似文献   

6.
Nickel‐substituted manganese spinel LiNi0.5Mn1.5O4 (LNMO) is a promising 5 V class positive electrode material for lithium‐ion batteries. As micron‐sized LNMO particles show high rate capability in its two‐phase coexistence regions, the phase transition mechanism is of great interest in understanding the electrode behavior at high rates. Here, the phase transition dynamics of LixNi0.5Mn1.5O4 is elucidated on high rate charging–discharging using operando time‐resolved X‐ray diffraction (TR‐XRD). The TR‐XRD results indicate the existence of intermediate states, in addition to the thermodynamically stable phases, and it is shown that the origin of such intermediate states is ascribed to the solid‐solution domains at the phase transition front, as supported by the analysis using transmission electron microscopy coupled with electron energy‐loss spectroscopy. The phase transition pathways dependent on the reaction rate are shown, together with possible explanation for this unique transition behavior.  相似文献   

7.
A series of F‐substituted Na2/3Ni1/3Mn2/3O2?xFx (x = 0, 0.03, 0.05, 0.07) cathode materials have been synthesized and characterized by solid‐state 19F and 23Na NMR, X‐ray photoelectron spectroscopy, and neutron diffraction. The underlying charge compensation mechanism is systematically unraveled by X‐ray absorption spectroscopy and electron energy loss spectroscopy (EELS) techniques, revealing partial reduction from Mn4+ to Mn3+ upon F‐substitution. It is revealed that not only Ni but also Mn participates in the redox reaction process, which is confirmed for the first time by EELS techniques, contributing to an increase in discharge specific capacity. The detailed structural transformations are also revealed by operando X‐ray diffraction experiments during the intercalation and deintercalation process of Na+, demonstrating that the biphasic reaction is obviously suppressed in the low voltage region via F‐substitution. Hence, the optimized sample with 0.05 mol f.u.?1 fluorine substitution delivers an ultrahigh specific capacity of 61 mAh g?1 at 10 C after 2000 cycles at 30 °C, an extraordinary cycling stability with a capacity retention of 75.6% after 2000 cycles at 10 C and 55 °C, an outstanding full battery performance with 89.5% capacity retention after 300 cycles at 1 C. This research provides a crucial understanding of the influence of F‐substitution on the crystal structure of the P2‐type materials and opens a new avenue for sodium‐ion batteries.  相似文献   

8.
Silicon‐based anodes are an appealing alternative to graphite for lithium‐ion batteries because of their extremely high capacity. However, poor cycling stability and slow kinetics continue to limit the widespread use of silicon in commercial batteries. Performance improvement has been often demonstrated in nanostructured silicon electrodes, but the reaction mechanisms involved in the electrochemical lithiation of nanoscale silicon are not well understood. Here, in‐situ synchrotron X‐ray diffraction is used to monitor the subtle structural changes occurring in Si nanoparticles in a Si‐C composite electrode during lithiation. Local analysis by electron energy‐loss spectroscopy and transmission electron microscopy is performed to interrogate the nanoscale morphological changes and phase evolution of Si particles at different depths of discharge. It is shown that upon lithiation, Si nanoparticles behave quite differently than their micrometer‐sized counterparts. Although both undergo an electrochemical amorphization, the micrometer‐sized silicon exhibits a linear transformation during lithiation, while a two‐step process occurs in the nanoscale Si. In the first half of the discharge, lithium reacts with surfaces, grain boundaries and planar defects. As the reaction proceeds and the cell voltage drops, lithium consumes the crystalline core transforming it into amorphous LixSi with a primary particle size of just a few nanometers. Unlike the bulk silicon electrode, no Li15Si4 or other crystalline LixSi phases were formed in nanoscale Si at the fully‐lithiated state.  相似文献   

9.
Zinc is recently gaining interest in the battery community as potential alternative anode material, because of its large natural abundance and potentially larger volumetric density than graphite. Nevertheless, pure Zn anodes have shown so far very poor cycling performance. Here, the electrochemical performance of Zn‐rich porous Cu–Zn alloys electrodeposited by an environmentally friendly (aqueous) dynamic hydrogen bubble template method is reported. The lithiation/delithiation mechanism is studied in detail by both in situ and ex situ X‐ray diffraction, indicating the reversible displacement of Zn from the Cu–Zn alloy upon reaction with Li. The influence of the alloy composition on the performance of carbon‐ and binder‐free electrodes is also investigated. The optimal Cu:Zn atomic ratio is found to be 18:82, which provides impressive rate capability up to 10 A g?1 (≈30C), and promising capacity retention upon more than 500 cycles. The high electronic conductivity provided by Cu, and the porous electrode morphology also enable superior lithium storage capability at low temperature. Cu18Zn82 can indeed steadily deliver ≈200 mAh g?1 at ?20 °C, whereas an analogous commercial graphite electrode rapidly fades to only 12 mAh g?1.  相似文献   

10.
Anatase TiO2 is an extensively studied anode material for lithium‐ion batteries because of its superior capability of storing Li+ electrochemically. Here reversible lithium storage of TiO2 is achieved chemically using redox targeting reactions. In the presence of a pair of redox mediators, bis(pentamethylcyclopentadienyl)cobalt (CoCp* 2) and cobaltocene (CoCp2) in an electrolyte, TiO2 and its lithiated form Li x TiO2 can be reduced and oxidized by CoCp* 2 and CoCp2 +, respectively, which accompany Li+ insertion and extraction, albeit without attaching the TiO2 onto the electrode. The reversible chemical lithiation/delithiation and the involved phase transitions are unambiguously confirmed using density functional theory (DFT) calculations, UV‐vis spectroscopy, X‐ray photoelectron spectoscopy (XPS), and Raman spectroscopy. A redox flow lithium‐ion battery (RFLB) half‐cell is assembled and evaluated, which is a critical step towards the development of RFLB full cells.  相似文献   

11.
Nickel sulfides are regarded as promising anode materials for advanced rechargeable lithium‐ion batteries due to their high theoretical capacity. However, capacity fade arising from significant volume changes during operation greatly limits their practical applications. Herein, confined NiSx@C yolk–shell microboxes are constructed to address volume changes and confine the active material in the internal void space. Having benefited from the yolk–shell structure design, the prepared NiSx@C yolk–shell microboxes display excellent electrochemical performance in lithium‐ion batteries. Particularly, it delivers impressive cycle stability (460 mAh g?1 after 2000 cycles at 1 A g?1) and superior rate performance (225 mAh g?1 at 20 A g?1). Furthermore, the lithium storage mechanism is ascertained with in situ synchrotron high‐energy X‐ray diffractions and in situ electrochemical impedance spectra. This unique confined yolk–shell structure may open up new strategies to create other advanced electrode materials for high performance electrochemical storage systems.  相似文献   

12.
The exploration of new and efficient energy storage mechanisms through nanostructured electrode design is crucial for the development of high‐performance rechargeable batteries. Herein, black phosphorus quantum dots (BPQDs) and Ti3C2 nanosheets (TNSs) are employed as battery and pseudocapacitive components, respectively, to construct BPQD/TNS composite anodes with a novel battery‐capacitive dual‐model energy storage (DMES) mechanism for lithium‐ion and sodium‐ion batteries. Specifically, as a battery‐type component, BPQDs anchored on the TNSs are endowed with improved conductivity and relieved stress upon cycling, enabling a high‐capacity and stable energy storage. Meanwhile, the pseudocapacitive TNS component with further atomic charge polarization induced by P? O? Ti interfacial bonds between the two components allows enhanced charge adsorption and efficient interfacial electron transfer, contributing a higher pseudocapacitive value and fast energy storage. The DMES mechanism is evidenced by substantial characterizations of X‐ray photoelectron spectroscopy and X‐ray absorption fine structure spectroscopy, density functional theory calculations, and kinetics analyses. Consequently, the composite electrode exhibits superior battery performance, especially for lithium storage, such as high capacity (910 mAh g?1 at 100 mA g?1), long cycling stability (2400 cycles with a capacity retention over 100%), and high rate capability, representing the best comprehensive battery performance in BP‐based anodes to date.  相似文献   

13.
A novel Sn4P3/graphite composite anode material with superior capacity and cycling performance (651 mA h g?1 after 100 cycles) is investigated by in situ X‐ray absorption spectroscopy. Extended X‐ray absorption fine structure modeling and detailed analysis of local environment changes are correlated to the cell capacity and reveal the mechanism of lithiation/delithiation process. Results show that in the first two lithiation/delithiation cycles crystalline Sn4P3 is fully converted to an amorphous SnPx phase, which in further cycles participates in reversible conversion and alloying reactions. The superior reversibility of this material is attributed to the highly dispersed SnPx in the graphite matrix, which provides enhanced electrical conductivity and prevents aggregation of Sn clusters during the lithiation/delithiation process. The gradual capacity fading in long‐term cycling is attributed to the observed increase in the size and the amount of metallic Sn clusters in the delithiated state, correlated to the reduced recovery of the SnPx phase. This paper reveals the mechanism responsible for the highly reversible tin phosphides and provides insights for improving the capacity and cycle life of conversion and alloying materials.  相似文献   

14.
The silicate compounds Li2MSiO4 (where M = Mn, Fe, Co) have received significant attention recently as Li intercalation electrodes. Overwhelmingly they exhibit relatively poor kinetics of ion intercalation. By synthesizing Li‐rich solid solutions of the form Li2+2x Fe1?x SiO4 (with 0 ≤ x ≤ 0.3), the structural requirements for fast ion transport and hence relatively fast intercalation have been identified. Specifically the presence of additional Li+ in interstitial sites, not normally occupied in the stoichiometric Li2FeSiO4 compound, enhances ion transport by more than two orders of magnitude. The results, obtained by combining electrochemical measurements, with powder X‐ray and neutron diffraction and atomistic modeling of the ion dynamics, provide valuable guidance in designing future intercalation electrodes with high Li‐ion transport and, hence, fast electrode kinetics.  相似文献   

15.
Spinel‐layered composites, where a high‐voltage spinel is incorporated in a layered lithium‐rich (Li‐rich) cathode material with a nominal composition x{0.6Li2MnO3 · 0.4[LiCo0.333Mn0.333Ni0.333]O2} · (1 – x) Li[Ni0.5Mn1.5]O4 (x = 0, 0.3, 0.5, 0.7, 1) are synthesized via a hydroxide assisted coprecipitation route to generate high‐energy, high‐power cathode materials for Li‐ion batteries. X‐ray diffraction patterns and the cyclic voltammetry investigations confirm the presence of both the parent components in the composites. The electrochemical investigations performed within a wide potential window show an increased structural stability of the spinel component when incorporated into the composite environment. All the composite materials exhibit initial discharge capacities >200 mAh g–1. The compositions with x = 0.5 and 0.7 show excellent cycling stability among the investigated materials. Moreover, the first cycle Coulombic efficiency achieve a dramatic improvement with the incorporation of the spinel component. More notably, the composite materials with increased spinel component exhibit superior rate capability compared with the parent Li‐rich material especially together with the highest capacity retention for x = 0.5 composition, making this as the optimal high‐energy high‐power material. The mechanisms involved in the symbiotic relationship of the spinel and layered Li‐rich components in the above composites are discussed.  相似文献   

16.
The novel red‐emitting phosphors KxSr1?2xMoO4:Pr3+x (0.00 ≤ x ≤ 0.04) were prepared by solid‐state reaction. The crystallization and particle sizes of samples were investigated by powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). TEM images were in good agreement with the theoretical calculation data from the XRD patterns. Photoluminescence analysis indicated that there were three excitation peaks under 430–500 nm, and all samples showed the intensely red emission at 648 nm corresponding to the 3P03F2 transition of Pr3+. The concentrations of doping ions, temperature and polyethylene glycol in the phosphor system can significantly influence the intensity of the red emission. The photoluminescence spectral intensity reached its maximum at x = 0.02. The results showed that the investigated phosphor is a potential red phosphor for white light‐emitting diodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
It is frequently assumed that sodium‐ion battery chemistry exhibits a behavior that is similar to the more frequently investigated lithium‐ion chemistry. However, in this work it is shown that there are great, and rather surprising, differences, at least in the case of anatase TiO2. While the generally more reducing lithium ion is reversibly inserted in the anatase TiO2 lattice, sodium ions appear to partially reduce the rather stable oxide and form metallic titanium, sodium oxide, and amorphous sodium titanate, as revealed by means of in situ X‐ray diffraction, ex situ X‐ray photoelectron spectroscopy, scanning electron microscopy, and Raman spectroscopy. Nevertheless, once the electrochemical transformation of anatase TiO2 is completed, the newly formed material presents a very stable long‐term cycling performance, excellent high rate capability, and superior coulombic efficiency, highlighting it as a very promising anode material for sodium‐ion battery applications.  相似文献   

18.
The thermoelectric properties of crystalline melt‐grown ingots of p‐type PbTe–xMgTe (x = 1–3 mol%) doped with Na2Te (1–2 mol%) were investigated over the temperature range of 300 K to 810 K. While the powder X‐ray diffraction patterns show that all samples crystallize in the NaCl‐type structure with no MgTe or other phases present, transmission electron microscopy reveals ubiquitous MgTe nanoprecipitates in the PbTe. The very small amounts of MgTe in PbTe have only a small effect on the electrical transport properties of the system, while they have a large effect on thermal transport significantly reducing the lattice thermal conductivity. A ZT of 1.6 at 780 K is achieved for the PbTe containing 2% MgTe doped with 2% Na2Te.  相似文献   

19.
In this study, a new dual‐ion battery (DIB) concept based on an aqueous/non‐aqueous electrolyte is reported, combining high safety in the form of a nonflammable water‐in‐salt electrolyte, a high cathodic stability by forming a protective interphase on the negative electrode (non‐aqueous solvent), and improved sustainability by using a graphite‐based positive electrode material. Far beyond the anodic stability limit of water, the formation of a stage‐2 acceptor‐type graphite intercalation compound (GIC) of bis(trifluoromethanesulfonyl) imide (TFSI) anions from an aqueous‐based electrolyte is achieved for the first time, as confirmed by ex‐situ X‐ray diffraction. The choice of negative electrode material shows a huge impact on the performance of the DIB cell chemistry, i.e., discharge capacities up to 40 mAh g?1 are achieved even at a high specific current of 200 mA g?1. In particular, lithium titanium phosphate (LiTi2(PO4)3; LTP) and lithium titanium oxide (Li4Ti5O12; LTO) are evaluated as negative electrodes, exhibiting specific advantages for this DIB setup. In this work, a new DIB storage concept combining an environmentally friendly, transition‐metal‐free, abundant graphite positive electrode material, and a nonflammable water‐based electrolyte is established, thus paving the path toward a sustainable and safe alternative energy storage technology.  相似文献   

20.
As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号