首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfur represents one of the most promising cathode materials for next‐generation batteries; however, the widely observed polysulfide dissolution/shuttling phenomenon in metal–sulfur redox chemistries has severely restricted their applications. Here it is demonstrated that when pairing the sulfur electrode with the iron metal anode, the inherent insolubility of iron sulfides renders the shuttling‐free nature of the Fe–S electrochemical reactions. Consequently, the sulfur electrode exhibits promising performance for Fe2+ storage, where a high capacity of ≈1050 mAh g?1, low polarization of ≈0.16 V as well as stable cycling of 150 cycles are realized. The Fe–S redox mechanism is further revealed as an intriguing stepwise conversion of S8 ? FeS2 ? Fe3S4 ? FeS, where a low volume expansion of ≈32.6% and all‐solid‐state phase transitions facilitate the reaction reversibility. This study suggests an alternative direction to exploit sulfur electrodes in rechargeable transition metal–sulfur batteries.  相似文献   

2.
High‐loading lithium–sulfur batteries have gained considerable fame for possessing high area capacity, but face a stern challenge from capacity fading because of serious issues, including “polysulfides shuttling,” insulating S/Li2S, large volume changes, and the shedding of S/C particles during drying or the cell encapsulation process. Herein, a bioinspired water‐soluble binder framework is constructed via intermolecular physical cross‐linking of functional side chains hanging on the terpolymer binder. Experimental results and density‐functional theory (DFT) calculations reveal that this network binder featuring superior volume change accommodation can also capture lithium polysulfides (LiPSs) through strong anchoring of O, N+ actives to LiPSs by forming Li···O and N+···Sx2? bonds. In addition, the abundant negative charged sulfonate coordination sites and good electrolyte uptake of the designed binder endow the assembled cells with high lithium ion conductivity and fast lithium ion diffusion. Consequently, a remarkable capacity retention of 98% after 350 cycles at 1 C and a high areal capacity of 12.8 mA h cm?2 with high sulfur loading of 12.0 mg cm?2 are achieved by applying the environmentally friendly binder.  相似文献   

3.
Lithium–sulfur (Li–S) batteries are deemed to be one of the most promising energy storage technologies because of their high energy density, low cost, and environmental benignancy. However, existing drawbacks including the shuttling of intermediate polysulfides, the insulating nature of sulfur, and the considerable volume change of sulfur cathode would otherwise result in the capacity fading and unstable cycling. To overcome these challenges, herein an in situ assembly route is presented to fabricate VS2/reduced graphene oxide nanosheets (G–VS2) as a sulfur host. Benefiting from the 2D conductive and polar VS2 interlayered within a graphene framework, the obtained G–VS2 hybrids can effectively suppress the polysulfide shuttling, facilitate the charge transport, and cushion the volume expansion throughout the synergistic effect of structural confinement and chemical anchoring. With these advantageous features, the obtained sulfur cathode (G–VS2/S) can deliver an outstanding rate capability (≈950 and 800 mAh g?1 at 1 and 2 C, respectively) and an impressive cycling stability at high rates (retaining ≈532 mAh g?1 after 300 cycles at 5 C). More significantly, it enables superior cycling performance of high‐sulfur‐loading cathodes (achieving an areal capacity of 5.1 mAh cm?2 at 0.2 C with a sulfur loading of 5 mg cm?2) even at high current densities.  相似文献   

4.
Sulfur electrodes confined in an inert carbon matrix show practical limitations and concerns related to low cathode density. As a result, these electrodes require a large amount of electrolyte, normally three times more than the volume used in commercial Li‐ion batteries. Herein, a high‐energy and high‐performance lithium–sulfur battery concept, designed to achieve high practical capacity with minimum volume of electrolyte is proposed. It is based on deposition of polysulfide species on a self‐standing and highly conductive carbon nanofiber network, thus eliminating the need for a binder and current collector, resulting in high active material loading. The fiber network has a functionalized surface with the presence of polar oxygen groups, with the aim to prevent polysulfide migration to the lithium anode during the electrochemical process, by the formation of S–O species. Owing to the high sulfur loading (6 mg cm?2) and a reduced free volume of the sulfide/fiber electrode, the Li–S cell is designed to work with as little as 10 µL cm?2 of electrolyte. With this design the cell has a high energy density of 450 Wh kg?1, a lifetime of more than 400 cycles, and the possibility of low cost, by use of abundant and eco‐friendly materials.  相似文献   

5.
The use of selenium as a cathode in rechargeable sodium–selenium batteries is hampered by low Se loading, inferior electrode kinetics, and polyselenide shuttling between the cathode and anode. Here a high‐performance sodium–selenium cell is presented by coupling a binder‐free, self‐interwoven carbon nanofiber–selenium cathode with a light‐weight carbon‐coated bifunctional separator. With this strategy, electrodes with a high Se mass loading (4.4 mg cm?2) render high reversible capacities of 599 mA h g?1 at 0.1C rate and 382 mA h g?1 at 5C rate. In addition, this novel cell offers good shelf‐life with a low self‐discharge, retaining 93.4% of its initial capacity even after resting for six months. As evidenced by experimental and density functional theory analysis, the remarkable dynamic (cycle life) and static (shelf‐life) stabilities originate from the high electrical conductivity, improved Na‐ion accessibility through the 3D interconnected open channels, and highly restrained polyselenide shuttle. The results demonstrate the viability of high‐performance sodium–selenium batteries with high selenium loading.  相似文献   

6.
Lithium–sulfur (Li–S) batteries have a much higher energy density than Li ion batteries and thus are considered as next generation batteries for electric vehicle applications. However, the problem of rapid capacity fading due to the shuttling of soluble polysulfides between electrodes remains the main obstacle for practical applications. Here, a thin and selective interlayer structure has been designed and produced to decrease the charge transfer resistance and mitigate the shuttling problem, simply by coating the surface of cathode with a thin film of functionalized boron nitride nanosheets/graphene. Due to this thin and ultralight interlayer, the specific capacity and cycling stability of the Li–S batteries with a cathode of sulfur‐containing porous carbon nanotubes (≈60 wt% sulfur content) have been improved significantly with a life of over 1000 cycles, an initial specific capacity of 1100 mA h g?1 at 3 C, and a cycle decay as low as 0.0037% per cycle. This new interlayer provides a promising approach to significantly enhance the performance of Li–S batteries.  相似文献   

7.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

8.
Advancements in portable electronic devices and electric powered transportation has drawn more attention to high energy density batteries, especially lithium–sulfur batteries due to the low cost of sulfur and its high energy density. However, the lithium–sulfur battery is still quite far from commercialization mostly because of incompatibility between all major components of the battery—the cathode, anode, and electrolyte. Here a methodology is demonstrated that shows promise in significantly improving battery stability by multilayer encapsulation of sulfur particles, while using conventional electrolytes, which allows a long cycle life and an improved Coulombic efficiency battery at low electrolyte feeding. The multilayer encapsulated sulfur battery demonstrates a Coulombic efficiency as high as 98%, when a binder‐free electrode is used. It is also shown that the all‐out self‐discharge of the cell after 168 h can be reduced from 34% in the regular sulfur battery to less than 9% in the battery with the multilayer encapsulated sulfur electrode.  相似文献   

9.
Freestanding cathode materials with sandwich‐structured characteristic are synthesized for high‐performance lithium–sulfur battery. Sulfur is impregnated in nitrogen‐doped graphene and constructed as primary active material, which is further welded in the carbon nanotube/nanofibrillated cellulose (CNT/NFC) framework. Interconnected CNT/NFC layers on both sides of active layer are uniquely synthesized to entrap polysulfide species and supply efficient electron transport. The 3D composite network creates a hierarchical architecture with outstanding electrical and mechanical properties. Synergistic effects generated from physical and chemical interaction could effectively alleviate the dissolution and shuttling of the polysulfide ions. Theoretical calculations reveal the hydroxyl functionization exhibits a strong chemical binding with the discharge product (i.e., Li2S). Electrochemical measurements suggest that the rationally designed structure endows the electrode with high specific capacity and excellent rate performance. Specifically, the electrode with high areal sulfur loading of 8.1 mg cm?2 exhibits an areal capacity of ≈8 mA h cm?2 and an ultralow capacity fading of 0.067% per cycle over 1000 discharge/charge cycles at C/2 rate, while the average coulombic efficiency is around 97.3%, indicating good electrochemical reversibility. This novel and low‐cost fabrication procedure is readily scalable and provides a promising avenue for potential industrial applications.  相似文献   

10.
Lithium–sulfur (Li–S) batteries are promising candidates for energy storage, but suffer from capacity and cycling challenges caused by the serious shuttling effect of polysulfide (PS) ions. To address these issues, a sodium alginate (SA)‐derived affinity laminated chromatography membrane built‐in electrode is designed. This is the first attempt to utilize this type of membrane, which is widely used for the selective adsorption of proteins, in the battery field. An ordered multilayer structure throughout the electrode can easily be obtained, and the number of membrane layers can be also conveniently controlled by varying the cross‐linking time of SA. The PS shuttling effect is efficiently suppressed and the permeability of PSs is reduced by enveloping the carbon/sulfur powder in ultrathin laminated chromatography membranes. As a result, these designed electrodes deliver a superhigh initial capacity of 1492 mA h g?1, with a capacity retention almost 20% higher than the contrast. This low‐cost and easily mass‐producible strategy inspired by affinity chromatography is expected to effectively solve the PS shuttling problem toward high‐loading and long‐lifetime Li–S batteries in practice.  相似文献   

11.
A comprehensive approach is reported to construct stable and high volumetric energy density lithium–sulfur batteries, by coupling a multifunctional and hierarchically structured sulfur composite with an in‐situ cross‐linked binder. Through a combination of first‐principles calculations and experimental studies, it is demonstrated that a hybrid sulfur host composed by alternately stacking graphene and layered graphitic carbon nitride embraces high electronic conductivity as well as high polysulfide adsorptivity. It is further shown that the cross‐linked elastomeric binder empowers the hierarchical sulfur composites—multi‐microns in size—with the ability to form crack‐free and compact high‐loading electrodes using traditional slurry processing. Using this approach, electrodes with up to 14.9 mg cm?2 sulfur loading and an extremely low electrolyte/sulfur ratio as low as 3.5: 1 µL mg?1 are obtained. This study sheds light on the essential role of multifaceted cathode design and further on the challenges facing lithium metal anodes in building high volumetric energy density lithium–sulfur batteries.  相似文献   

12.
Li2S is one of the most promising cathode materials for Li‐ion batteries because of its high theoretical capacity and compatibility with Li‐metal‐free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder‐free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g?1 with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm?2 at 0.5C.  相似文献   

13.
The design and fabrication of high‐performance all‐plastic batteries is essentially important to achieve future flexible electronics. A major challenge in this field is the lack of stable and reliable soft organic electrodes with satisfactory performance. Here, a novel all‐plastic‐electrode based Li‐ion battery with a single flexible bi‐functional ladderized heterocyclic poly(quinone), (C6O2S2)n, as both cathode and anode is demonstrated. Benefiting from its unique ladder‐like quinone and dithioether structure, the as‐prepared polymer cathode shows a high energy density of 624 Wh kg?1 (vs lithium anode) and a stable battery life of 1000 cycles. Moreover, the as‐fabricated symmetric full‐battery delivers a large capacity of 249 mAh g?1 (at 20 mA g?1), a good capacity retention of 119 mAh g?1 after 250 cycles (at 1.0 A g?1) and a noteworthy energy density up to 276 Wh kg?1. The superior performance of poly(2,3‐dithiino‐1,4‐benzoquinone)‐based electrode rivals most of the state‐of‐the‐art demonstrations on organic‐based metal‐ion shuttling batteries. The study provides an effective strategy to develop stable bi‐functional electrode materials toward the next‐generation of high performance all‐plastic batteries.  相似文献   

14.
Safety, nontoxicity, and durability directly determine the applicability of the essential characteristics of the lithium (Li)‐ion battery. Particularly, for the lithium–sulfur battery, due to the low ignition temperature of sulfur, metal lithium as the anode material, and the use of flammable organic electrolytes, addressing security problems is of increased difficulty. In the past few years, two basic electrolyte systems are studied extensively to solve the notorious safety issues. One system is the conventional organic liquid electrolyte, and the other is the inorganic solid‐state or quasi‐solid‐state composite electrolyte. Here, the recent development of engineered liquid electrolytes and design considerations for solid electrolytes in tackling these safety issues are reviewed to ensure the safety of electrolyte systems between sulfur cathode materials and the lithium‐metal anode. Specifically, strategies for designing and modifying liquid electrolytes including introducing gas evolution, flame, aqueous, and dendrite‐free electrolytes are proposed. Moreover, the considerations involving a high‐performance Li+ conductor, air‐stable Li+ conductors, and stable interface performance between the sulfur cathode and the lithium anode for developing all‐solid‐state electrolytes are discussed. In the end, an outlook for future directions to offer reliable electrolyte systems is presented for the development of commercially viable lithium–sulfur batteries.  相似文献   

15.
A new sodium–sulfur (Na–S) flow battery utilizing molten sodium metal and flowable sulfur‐based suspension as electrodes is demonstrated and analyzed for the first time. Unlike the conventional flow battery and the high‐temperature Na–S battery, the proposed flow battery system decouples the energy and power thermal management by operating at different temperatures for the storage tank (near room temperature) and the power stack (100–150 °C). The new Na–S flow battery offers several advantages such as easy preparation and integration of the electrode, low energy efficiency loss due to temperature maintenance, great tolerance of the volume change of the metal anode, and efficient utilization of sulfur. The Na–S flow battery has an estimated system cost in the range of $50–100 kWh?1 which is very competitive for grid‐scale energy storage applications.  相似文献   

16.
Lithium–sulfur (Li–S) batteries have great promise to support the next‐generation energy storage if their sluggish redox kinetics and polysulfide shuttling can be addressed. The rational design of sulfur electrodes plays key roles in tacking these problems and achieving high‐efficiency sulfur electrochemistry. Herein, a synergetic defect and architecture engineering strategy to design highly disordered spinel Ni–Co oxide double‐shelled microspheres (NCO‐HS), which consist of defective spinel NiCo2O4–x (x = 0.9 if all nickel is Ni2+ and cobalt is Co2.13+), as the multifunctional sulfur host material is reported. The in situ constructed cation and anion defects endow the NCO‐HS with significantly enhanced electronic conductivity and superior polysulfide adsorbability. Meanwhile, the delicate nanoconstruction offers abundant active interfaces and reduced ion diffusion pathways for efficient Li–S chemistry. Attributed to these synergistic features, the sulfur composite electrode achieves excellent rate performance up to 5 C, remarkable cycling stability over 800 cycles and good areal capacity of 6.3 mAh cm?2 under high sulfur loading. This proposed strategy based on synergy engineering could also inform material engineering in related energy storage and conversion fields.  相似文献   

17.
Poor cycling stability is one of the key scientific issues needing to be solved for Li‐ and Mn‐rich layered oxide cathode. In this paper, sodium carboxymethyl cellulose (CMC) is first used as a novel binder in Li1.2Ni0.13Co0.13Mn0.54O2 cathode to enhance its cycling stability. Electrochemical performance is conducted by galvanostatic charge and discharge. Structure and morphology are characterized by X‐ray diffraction, scanning electronic microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy. Results reveal that the CMC as binder can not only stabilize the electrode structure by preventing the electrode materials to detach from the current collector but also suppress the voltage fading of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode due to Na+ ions doping. Most importantly, the dissolution of metal elements from the cathode materials into the electrolyte is also inhibited.  相似文献   

18.
Herein, a flexible method is designed to engineer nitrogen‐doped carbon materials (NC) with different functional and structural specialties involving N‐doping level, graphitization, and surface area via tuning the carbonization temperature of the pre‐prepared zeolitic imidazolate framework‐8 (ZIF‐8 ) crystals. With the aim to unveil the effect of these features on the electrochemical performance of sulfur cathode, these samples are evaluated as sulfur host and comprehensively investigated. NC‐800 (800 °C, 10.45%N, 1032.4 m2 g?1) exhibits the best electrochemical capability comparing with NC‐700 (700 °C, 16.59%N, 891.4 m2 g?1) and NC‐900 (900 °C, 7.59%N, 987.6 m2 g?1). High surface area and N‐doping can work together to well increase the capacity of sulfur cathode, thanks to the improved transportation of charge carriers and effective anchoring of active sulfur, while the latter specialty just makes sulfur cathode have decent capacity in case of low surface area. Graphitization and quaternary nitrogen favorably improve the electric conductivity of the electrode, empowering the improvement of discharge capacity initially and rendering the good cyclability cooperatively relying on the effective immobilization of active materials. The related results suggest the significance of rational design of carbon maxtrix for sulfur to improve the performance of Li‐S batteries.  相似文献   

19.
The lithium–sulfur (Li–S) battery is considered a promising candidate for the next generation of energy storage system due to its high specific energy density and low cost of raw materials. However, the practical application of Li–S batteries is severely limited by several weaknesses such as the shuttle effect of polysulfides and the insulation of the electrochemical products of sulfur and Li2S/Li2S2. Here, by doping nitrogen and integrating highly dispersed cobalt catalysts, a porous carbon nanocage derived from glucose adsorbed metal–organic framework is developed as the host for a sulfur cathode. This host structure combines the reported positive effects, including high conductivity, high sulfur loading, effective stress release, fast lithium‐ion kinetics, fast interface charge transport, fast redox of Li2Sn, and strong physical/chemical absorption, achieving a long cycle life (86% of capacity retention at 1C within 500 cycles) and high rate performance (600 mAh g?1 at 5C) for a Li–S battery. By combining experiments and density functional theoretical calculations, it is demonstrated that the well‐dispersed cobalt clusters play an important role in greatly improving the diffusion dynamics of lithium, and enhance the absorption and conversion capability of polysulfides in the host structure.  相似文献   

20.
The shuttle of polysulfide and severe volume change of sulfur cathodes, are the bottlenecks in the practical application of lithium–sulfur batteries, and need to be solved through further exploration of simple and scalable strategies. Herein, an elastic and conductive coating layer is designed and synthesized, by combining water soluble conducting polymer modified carbon nanotubes (PASANTs) with crosslinked waterborne polyurethane (cWPU). It shows high electronic conductivity and excellent resilience. As a result, a lithium–sulfur battery with cWPU/PASANTs coated cathode is able to achieve an outstanding cycle stability with a capacity of 70.8% after 500 cycles at 0.5C and an excellent rate performance (specific capacity of 1130 mAh g?1 at 0.1C and maintain 68.2% at 2C). This work embodies a systematic design concept, which shows the application prospects of large‐scale production, and is expected to be further applied to other easily pulverized high‐specific‐capacity materials such as silicon and tin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号