首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn‐ and Cu‐phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T1) and the charge‐transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin–orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T1 and the CT state does not substantially affect nonradiative voltage losses.  相似文献   

2.
In organic solar cells (OSCs), the energy of the charge‐transfer (CT) complexes at the donor–acceptor interface, E CT, determines the maximum open‐circuit voltage (V OC). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi‐crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V OC enormously. Yet, the question of how structural heterogeneities alter CT states and the V OC is seldom addressed systematically. In this work, we combine experimental measurements of vacuum‐deposited rubrene/C60 bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E CT and V OC. We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low‐lying CT states contribute strongly to V OC losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E CT configurations and maximizes V OC.  相似文献   

3.
Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved.  相似文献   

4.
5.
The photoinduced open‐circuit voltage (Voc) loss commonly observed in bulk heterojunction organic solar cells made from amorphous polymers is investigated. It is observed that the total charge carrier density and, importantly, the recombination dynamics are unchanged by photoinduced burn‐in. Charge extraction is used to monitor changes in the density of states (DOS) during degradation of the solar cells, and a broadening over time is observed. It is proposed that the Voc losses observed during burn‐in are caused by a redistribution of charge carriers in a broader DOS. The temperature and light intensity dependence of the Voc losses can be described with an analytical model that contains the amount of disorder broadening in a Gaussian DOS as the only fit parameter. Finally, the Voc loss in solar cells made from amorphous and crystalline polymers is compared and an increased stability observed in crystalline polymer solar cells is investigated. It is found that solar cells made from crystalline materials have a considerably higher charge carrier density than those with amorphous materials. The effects of a DOS broadening upon aging are suppressed in solar cells with crystalline materials due to their higher carrier density, making crystalline materials more stable against Voc losses during burn‐in.  相似文献   

6.
Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC61BM. These devices achieve open‐circuit voltages (Voc) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. Voc’s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage‐dependent, steady state and time‐resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of –0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with Voc values above 1.0 V and that non‐fullerene acceptor materials with large optical gaps (>1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of Voc exceeding 1.0 V.  相似文献   

7.
Ternary organic solar cells (OSCs) are among the best‐performing organic photovoltaic devices to date, largely due to the recent development of nonfullerene acceptors. However, fullerene molecules still play an important role in ternary OSC systems, since, for reasons not well understood, they often improve the device performance, despite their lack of absorption. Here, the photophysics of a prototypical ternary small‐molecule OSC blend composed of the donor DR3, the nonfullerene acceptor ICC6, and the fullerene derivative PC71BM is studied by ultrafast spectroscopy. Surprisingly, it is found that after excitation of PC71BM, ultrafast singlet energy transfer to ICC6 competes efficiently with charge transfer. Subsequently, singlets on ICC6 undergo hole transfer to DR3, resulting in free charge generation. Interestingly, PC71BM improves indirectly the electron mobility of the ternary blend, while electrons reside predominantly in ICC6 domains as indicated by fast spectroscopy. The improved mobility facilitates charge carrier extraction, in turn leading to higher device efficiencies of the ternary compared to binary solar cells. Using the (photo)physical parameters obtained from (transient) spectroscopy and charge transport measurements, the device's current–voltage characteristics are simulated and it is demonstrated that the parameters accurately reproduce the experimentally measured device performance.  相似文献   

8.
This work deals with the investigation of burn‐in loss in ternary blended organic photovoltaics (OPVs) prepared from a UV‐crosslinkable semiconducting polymer (P2FBTT‐Br) and a nonfullerene acceptor (IEICO‐4F) via a green solvent process. The synthesized P2FBTT‐Br can be crosslinked by UV irradiation for 150 s and dissolved in 2‐methylanisole due to its asymmetric structure. In OPV performance and burn‐in loss tests performed at 75 °C or AM 1.5G Sun illumination for 90 h, UV‐crosslinked devices with PC71BM show 9.2% power conversion efficiency (PCE) and better stability against burn‐in loss than pristine devices. The frozen morphology resulting from the crosslinking prevents lateral crystallization and aggregation related to morphological degradation. When IEICO‐4F is introduced in place of a fullerene‐based acceptor, the burn‐in loss due to thermal aging and light soaking is dramatically suppressed because of the frozen morphology and high miscibility of the nonfullerene acceptor (18.7% → 90.8% after 90 h at 75 °C and 37.9% → 77.5% after 90 h at AM 1.5G). The resulting crosslinked device shows 9.4% PCE (9.8% in chlorobenzene), which is the highest value reported to date for crosslinked active materials, in the first green processing approach.  相似文献   

9.
Doping of organic bulk heterojunction solar cells has the potential to improve their power conversion efficiency (PCE). Deconvoluting the effect of doping on charge transport, recombination, and energetic disorder remains challenging. It is demonstrated that molecular doping has two competing effects: on one hand, dopant ions create additional traps while on the other hand free dopant‐induced charges fill deep states possibly leading to V OC and mobility increases. It is shown that molar dopant concentrations as low as a few parts per million can improve the PCE of organic bulk heterojunctions. Higher concentrations degrade the performance of the cells. In doped cells where PCE is observed to increase, such improvement cannot be attributed to better charge transport. Instead, the V OC increase in unannealed P3HT:PCBM cells upon doping is indeed due to trap filling, while for annealed P3HT:PCBM cells the change in V OC is related to morphology changes and dopant segregation. In PCDTBT:PC70BM cells, the enhanced PCE upon doping is explained by changes in the thickness of the active layer. This study highlights the complexity of bulk doping in organic solar cells due to the generally low doping efficiency and the constraint on doping concentrations to avoid carrier recombination and adverse morphology changes.  相似文献   

10.
11.
The limits of maximizing the open‐circuit voltage Voc in solar cells based on poly[2,7‐(9,9‐didecylfluorene)‐alt‐5,5‐(4,7‐di‐2‐thienyl‐2,1,3‐benzothiadiazole)] (PF10TBT) as a donor using different fullerene derivatives as acceptor are investigated. Bulk heterojunction solar cells with PF10TBT and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) give a Voc over 1 V and a power conversion efficiency of 4.2%. Devices in which PF10TBT is blended with fullerene bisadduct derivatives give an even higher Voc, but also a strong decrease in short circuit current (Jsc). The higher Voc is attributed to the higher LUMO of the acceptors in comparison to PCBM. By investigating the photophysics of PF10TBT:fullerene blends using near‐IR photo‐ and electroluminescence, time‐resolved photoluminescence, and photoinduced absorption we find that the charge transfer (CT) state is not formed efficiently when using fullerene bisadducts. Hence, engineering acceptor materials with a LUMO level that is as high as possible can increase Voc, but will only provide a higher power conversion efficiency, when the quantum efficiency for charge transfer is preserved. To quantify this, we determine the CT energy (ECT) and optical band gap (Eg), defined as the lowest first singlet state energy ES1 of either the donor or acceptor, for each of the blends and find a clear correlation between the free energy for photoinduced electron transfer and Jsc. We find that Eg ? qVoc > 0.6 eV is a simple, but general criterion for efficient charge generation in donor‐acceptor blends.  相似文献   

12.
For 19 diketopyrrolopyrrole polymers, the highest occupied molecular orbital (HOMO) energies are determined from i) the oxidation potential with square‐wave voltammetry (SWV), ii) the ionization potential using ultraviolet photoelectron spectroscopy (UPS), and iii) density functional theory (DFT) calculations. The SWV HOMO energies show an excellent linear correlation with the open‐circuit voltage (Voc) of optimized solar cells in which the polymers form blends with a fullerene acceptor ([6,6]‐phenyl‐C61‐butyl acid methyl ester or [6,6]‐phenyl‐C71‐butyl acid methyl ester). Remarkably, the slope of the best linear fit is 0.75 ± 0.04, i.e., significantly less than unity. A weaker correlation with Voc is found for the HOMO energies obtained from UPS and DFT. Within the experimental error, the SWV and UPS data are correlated with a slope close to unity. The results show that electrochemically determined oxidation potentials provide an excellent method for predicting the Voc of bulk heterojunction solar cells, with absolute deviations less than 0.1 V.  相似文献   

13.
14.
The origin of open‐circuit voltage (VOC) was studied for polymer solar cells based on a blend of poly(3‐hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of JV characteristics was analyzed by an equivalent circuit model. As a result, VOC increased with the decrease in the saturation current density J0 of the device. Furthermore, J0 was dependent on the activation energy EA for J0, which is related to the HOMO–LUMO energy gap between P3HT and fullerene. Interestingly, the pre‐exponential term J00 for J0 was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on VOC. This is probably because the recombination is non‐diffusion‐lmilited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of VOC is ascribed not only to the relative HOMO–LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene.  相似文献   

15.
Charge transport in organic photovoltaic (OPV) devices is often characterized by steady‐state mobilities. However, the suitability of steady‐state mobilities to describe charge transport has recently been called into question, and it has been argued that dispersion plays a significant role. In this paper, the importance of the dispersion of charge carrier motion on the performance of organic photovoltaic devices is investigated. An experiment to measure the charge extraction time under realistic operating conditions is set up. This experiment is applied to different blends and shows that extraction time is directly related to the geometrical average of the steady‐state mobilities. This demonstrates that under realistic operating conditions the steady‐state mobilities govern the charge extraction of OPV and gives a valuable insight in device performance.  相似文献   

16.
Low power electronics are an ideal application for organic photovoltaics (OPV) where a low‐cost OPV device can be integrated directly with a battery to provide a constant power source. We demonstrate ultra‐high voltage small molecule multijunction devices with open circuit voltage (VOC) values of up to 7V. Optical modelling is employed to aid the optimisation of the complex multi‐layer stacks and ensure current balancing is achieved between sub‐cells, and optimised multijunction devices show power conversion efficiencies of up to 3.4% which is a modest increase over the single junction devices. Sub‐cell donor/acceptor pairs of boron subphthalocyanine chloride (SubPc)/fullerene (C60) and SubPc/Cl6‐SubPc were selected both for their high VOC in order to minimise the required number of junctions, but also for their absorption overlap to reduce the spectral dependence of the device performance. As a result, the devices are shown to directly charge a micro‐energy cell type battery under both low illumination intensity white light and monochromatic illumination.  相似文献   

17.
Understanding the morphology of polymer‐based bulk heterojunction (BHJ) solar cells is necessary to improve device efficiencies. Blends of a low‐bandgap silole‐containing conjugated polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b;2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (PSBTBT) with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) were investigated under different processing conditions. The surface morphologies and vertical segregation of the “As‐Spun”, “Pre‐Annealed”, and “Post‐Annealed” films were studied by scanning force microscopy, contact angle measurements, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, dynamic secondary ion mass spectrometry, and neutron reflectivity. The results showed that PSBTBT was enriched at the cathode interface in the “As‐Spun” films and thermal annealing increased the segregation of PSBTBT to the free surface, while thermal annealing after deposition of the cathode increased the PCBM concentration at the cathode interface. Grazing‐incidence X‐ray diffraction and small‐angle neutron scattering showed that the crystallization of PSBTBT and segregation of PCBM occurred during spin coating, and thermal annealing increased the ordering of PSBTBT and enhanced the segregation of the PCBM, forming domains ~10 nm in size, leading to an improvement in photovoltaic performance.  相似文献   

18.
The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐octylthieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene‐rich domains, which cause extensive charge‐carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene‐rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin‐casting and this network acts as a template that prevents large‐scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene‐rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells.  相似文献   

19.
The field of organic photovoltaics has recently produced highly efficient single‐junction cells with power conversion efficiency >10%, yet the open‐circuit voltage (VOC) remains relatively low in many high performing systems. An accurate picture of the density of states (DOS) in working solar cells is crucial to understanding the sources of voltage loss, but remains difficult to obtain experimentally. Here, the tail of the DOS is characterized in a number of small molecule bulk heterojunction solar cells from the charge density dependence of VOC, and is directly compared to the disorder present within donor and acceptor components as measured by Kelvin probe. Using these DOS distributions, the total energy loss relative to the charge transfer state energy (ECT)—ranging from ≈0.5 to 0.7 eV—is divided into contributions from energetic disorder and from charge recombination, and the extent to which these factors limit the VOC is assessed.  相似文献   

20.
A high electron mobility polymer, poly{[N,N’‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5’‐(2,2’‐bithiophene) (P(NDI2OD‐T2)) is investigated for use as an electron acceptor in all‐polymer blends. Despite the high bulk electron mobility, near‐infrared absorption band and compatible energy levels, bulk heterojunction devices fabricated with poly(3‐hexylthiophene) (P3HT) as the electron donor exhibit power conversion efficiencies of only 0.2%. In order to understand this disappointing photovoltaic performance, systematic investigations of the photophysics, device physics and morphology of this system are performed. Ultra‐fast transient absorption spectroscopy reveals a two‐stage decay process with an initial rapid loss of photoinduced polarons, followed by a second slower decay. This second slower decay is similar to what is observed for efficient P3HT:PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) blends, however the initial fast decay that is absent in P3HT:PCBM blends suggests rapid, geminate recombination of charge pairs shortly after charge transfer. X‐ray microscopy reveals coarse phase separation of P3HT:P(NDI2OD‐T2) blends with domains of size 0.2 to 1 micrometer. P3HT photoluminescence, however, is still found to be efficiently quenched indicating intermixing within these mesoscale domains. This hierarchy of phase separation is consistent with the transient absorption, whereby localized confinement of charges on isolated chains in the matrix of the other polymer hinders the separation of interfacial electron‐hole pairs. These results indicate that local, interfacial processes are the key factor determining the overall efficiency of this system and highlight the need for improved morphological control in order for the potential benefit of high‐mobility electron accepting polymers to be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号