首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li‐rich oxide is a promising candidate for the cathodes of next‐generation lithium‐ion batteries. However, its utilization is restricted by cycling instability and inferior rate capability. To tackle these issues, three‐dimensional (3D), hierarchical, cube‐maze‐like Li‐rich cathodes assembled from two‐dimensional (2D), thin nanosheets with exposed {010} active planes, are developed by a facile hydrothermal approach. Benefiting from their unique architecture, 3D cube‐maze‐like cathodes demonstrate a superior reversible capacity (285.3 mAh g?1 at 0.1 C, 133.4 mAh g?1 at 20.0 C) and a great cycle stability (capacity retention of 87.4% after 400 cycles at 2.0 C, 85.2% after 600 cycles and 75.0% after 1200 cycles at 20.0 C). When this material is matched with a graphite anode, the full cell achieves a remarkable discharge capacity (275.2 mAh g?1 at 0.1 C) and stable cycling behavior (capacity retention of 88.7% after 100 cycles at 5.0 C, capacity retention of 84.8% after 100 cycles at 20.0 C). The present work proposes an accessible way to construct 3D hierarchical architecture assembled from 2D nanosheets with exposed high‐energy active {010} planes and verifies its validity for advanced Li‐rich cathodes.  相似文献   

3.
In this work, the effect of Li+ substitution in Li3V2(PO4)3 with a large divalent ion (Ca2+) toward lithium insertion is studied. A series of materials, with formula Li3?2xCaxV2(PO4)3/C (x = 0, 0.5, 1, and 1.5) is synthesized and studied in the potential region 3–0.01 V versus Li+/Li. Synchrotron diffraction demonstrates that Li3V2(PO4)3/C has a monoclinic structure (space group P21/n), while Ca1.5V2(PO4)3/C possesses a rhombohedral structure (space group R‐3c). The intermediate compounds, Li2Ca0.5V2(PO4)3/C and LiCaV2(PO4)3/C, are composed of two main phases, including monoclinic Li3V2(PO4)3/C and rhombohedral Ca1.5V2(PO4)3/C. Cyclic voltammetry reveals five reduction and oxidation peaks on Li3V2(PO4)3/C and Li2Ca0.5V2(PO4)3/C electrodes. In contrast, LiCaV2(PO4)3/C and Ca1.5V2(PO4)3/C have no obvious oxidation and reduction peaks but a box‐type voltammogram. This feature is the signature for capacitive‐like mechanism, which involves fast electron transfer on the surface of the electrode. Li3V2(PO4)3/C undergoes two solid‐solution and a short two‐phase reaction during lithiation and delithiation processes, whereas Ca1.5V2(PO4)3/C only goes through capacitive‐like mechanism. In operando X‐ray absorption spectroscopy confirms that, in both Li3V2(PO4)3/C and Ca1.5V2(PO4)3/C, V ions are reduced during the insertion of the first three Li ions. This study demonstrates that the electrochemical characteristic of polyanionic phosphates can be easily tuned by replacing Li+ with larger divalent cations.  相似文献   

4.
The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk‐type solid‐state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemical stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte‐carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li‐garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high‐performance solid‐state batteries.  相似文献   

5.
6.
Graphite is the most widely used anode material for Li‐ion batteries and is also considered a promising anode for K‐ion batteries. However, Na+, a similar alkali ion to Li+ or K+, is incapable of being intercalated into graphite and thus, graphite is not considered a potential electrode for Na‐ion batteries. This atypical behavior of Na has drawn considerable attention; however, a clear explanation of its origin has not yet been provided. Herein, through a systematic investigation of alkali metal graphite intercalation compounds (AM‐GICs, AM = Li, Na, K, Rb, Cs) in various solvent environments, it is demonstrated that the unfavorable local Na‐graphene interaction primarily leads to the instability of Na‐GIC formation but can be effectively modulated by screening Na ions with solvent molecules. Moreover, it is shown that the reversible Na intercalation into graphite is possible only for specific conditions of electrolytes with respect to the Na‐solvent solvation energy and the lowest unoccupied molecular orbital level of the complexes. It is believed that these conditions are applicable to other electrochemical systems involving guest ions and an intercalation host and hint at a general strategy to tailor the electrochemical intercalation between pure guest ion intercalation and cointercalation.  相似文献   

7.
Structural changes in Li2MnO3 cathode material for rechargeable Li‐ion batteries are investigated during the first and 33rd cycles. It is found that both the participation of oxygen anions in redox processes and Li+‐H+ exchange play an important role in the electrochemistry of Li2MnO3. During activation, oxygen removal from the material along with Li gives rise to the formation of a layered MnO2‐type structure, while the presence of protons in the interslab region, as a result of electrolyte oxidation and Li+‐H+ exchange, alters the stacking sequence of oxygen layers. Li re‐insertion by exchanging already present protons reverts the stacking sequence of oxygen layers. The re‐lithiated structure closely resembles the parent Li2MnO3, except that it contains less Li and O. Mn4+ ions remain electrochemically inactive at all times. Irreversible oxygen release occurs only during activation of the material in the first cycle. During subsequent cycles, electrochemical processes seem to involve unusual redox processes of oxygen anions of active material along with the repetitive, irreversible oxidation of electrolyte species. The deteriorating electrochemical performance of Li2MnO3 upon cycling is attributed to the structural degradation caused by repetitive shearing of oxygen layers.  相似文献   

8.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   

9.
The chemical processes occurring on the surface of cathode materials during battery cycling play a crucial role in determining battery's performance. However, the understanding of such surface chemistry is far from clear due to the complexity of redox chemistry during battery charge/discharge. Through intensive aberration corrected STEM investigation on ten layered oxide cathode materials, two important findings on the pristine oxides are reported. First, Ni and Co show strong plane selectivity when building up their respective surface segregation layers (SSLs). Specifically, Ni‐SSL is exclusively developed on (200)m facet in Li–Mn‐rich oxides (monoclinic C2/m symmetry) and on (012)h facet in Mn–Ni equally rich oxides (hexagonal R‐3m symmetry), while Co‐SSL has a strong preference to (20?2)m plane with minimal Co‐SSL also developed on some other planes in Li–Mn‐rich cathodes. Structurally, Ni‐SSLs tend to form spinel‐like lattice while Co‐SSLs are in a rock‐salt‐like structure. Second, by increasing Ni concentration in these layered oxides, Ni and Co SSLs can be suppressed and even eliminated. The findings indicate that Ni and Co SSLs are tunable through controlling particle morphology and oxide composition, which opens up a new way for future rational design and synthesis of cathode materials.  相似文献   

10.
Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(NixMnyCoz)O2 (NMC) (x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNixMnyCozO2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from ?25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi0.6Mn0.2Co0.2O2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.  相似文献   

11.
12.
Li2MnO3 is a critical component in the family of “Li‐excess” materials, which are attracting attention as advanced cathode materials for Li‐ion batteries. Here, first‐principle calculations are presented to investigate the electrochemical activity and structural stability of stoichiometric LixMnO3 (0 ≤ x ≤ 2) as a function of Li content. The Li2MnO3 structure is electrochemically activated above 4.5 V on delithiation and charge neutrality in the bulk of the material is mainly maintained by the oxidization of a portion of the oxygen ions from O2? to O1?. While oxygen vacancy formation is found to be thermodynamically favorable for x < 1, the activation barriers for O2? and O1? migration remain high throughout the Li com­position range, impeding oxygen release from the bulk of the compound. Defect layered structures become thermodynamically favorable at lower Li content (x < 1), indicating a tendency towards the spinel‐like structure transformation. A critical phase transformation path for forming nuclei of spinel‐like domains within the matrix of the original layered structure is proposed. Formation of defect layered structures during the first charge is shown to manifest in a depression of the voltage profile on the first discharge, providing one possible explanation for the observed voltage fade of the Li‐excess materials.  相似文献   

13.
A unique nanostructure of 3D and vertically aligned and interconnected porous carbon nanosheets (3D‐VCNs) is demonstrated by a simple carbonization of agar. The key feature of 3D‐VCNs is that they possess numerous 3D channels with macrovoids and mesopores, leading to high surface area of 1750 m2 g?1, which play an important role in loading large amount of sulfur, while vertically aligned microporous carbon nanosheets act as the multilayered physical barrier against polysulfides anions and prevent their dissolution in the electrolyte due to strong adsorption during cycling process. As a result, the 3D hybrid (3D‐S‐VCNs) infiltered with 68.3 wt% sulfur exhibits a high and stable reversible capacity of 844 mAh g?1 at the current density of 837 mA g?1 with excellent Coulombic efficiency ≈100%, capacity retention of ≈80.3% over 300 cycles, and good rate ability (the reversible capacity of 738 mAh g?1 at the high current density of 3340 mA g?1). The present work highlights the vital role of the introduction of 3D carbon nanosheets with macrovoids and mesopores in enhancing the performance of LSBs.  相似文献   

14.
15.
16.
Li2MnO3 is the parent compound of the well‐studied Li‐rich Mn‐based cathode materials xLi2MnO3·(1‐x)LiMO2 for high‐energy‐density Li‐ion batteries. Li2MnO3 has a very high theoretical capacity of 458 mA h g?1 for extracting 2 Li. However, the delithiation and lithiation behaviors and the corresponding structure evolution mechanism in both Li2MnO3 and Li‐rich Mn‐based cathode materials are still not very clear. In this research, the atomic structures of Li2MnO3 before and after partial delithiation and re‐lithiation are observed with spherical aberration‐corrected scanning transmission electron microscopy (STEM). All atoms in Li2MnO3 can be visualized directly in annular bright‐field images. It is confirmed accordingly that the lithium can be extracted from the LiMn2 planes and some manganese atoms can migrate into the Li layer after electrochemical delithiation. In addition, the manganese atoms can move reversibly in the (001) plane when ca. 18.6% lithium is extracted and 12.4% lithium is re‐inserted. LiMnO2 domains are also observed in some areas in Li1.63MnO3 at the first cycle. As for the position and occupancy of oxygen, no significant difference is found between Li1.63MnO3 and Li2MnO3.  相似文献   

17.
Despite enormous efforts devoted to the development of high‐performance batteries, the obtainable energy and power density, durability, and affordability of the existing batteries are still inadequate for many applications. Here, a self‐standing nanostructured electrode with ultrafast cycling capability is reported by in situ tailoring Li4Ti5O12 nanocrystals into a 3D carbon current collector (derived from filter paper) through a facile wet chemical process involving adsorption of titanium source, boiling treatment, and subsequent chemical lithiation. This 3D architectural electrode is charged/discharged to ≈60% of the theoretical capacity of Li4Ti5O12 in ≈21 s at 100 C rate (17 500 mA g?1 ), which also shows stable cycling performance for 1000 cycles at a cycling rate of 50 C. Additionally, modified 3D carbon current collector with much smaller pores and finer fiber diameters are further used, which significantly improve the specific capacity based on the weight of the entire electrode. These novel electrodes are promising for high‐power applications such as electric vehicles and smart grids. This unique electrode architecture also simplifies the electrode fabrication process and significantly enhances current collection efficiency (especially at high rate). Further, the conceptual electrode design is applicable to other oxide electrode materials for high‐performance batteries, fuel cells, and supercapacitors.  相似文献   

18.
Li and Mn‐rich layered oxides, xLi2MnO3·(1–x)LiMO2 (M=Ni, Mn, Co), are promising cathode materials for Li‐ion batteries because of their high specific capacity that can exceed 250 mA h g?1. However, these materials suffer from high 1st cycle irreversible capacity, gradual capacity fading, low rate capability, a substantial charge‐discharge voltage hysteresis, and a large average discharge voltage decay during cycling. The latter detrimental phenomenon is ascribed to irreversible structural transformations upon cycling of these cathodes related to potentials ≥4.5 V required for their charging. Transition metal inactivation along with impedance increase and partial layered‐to‐spinel transformation during cycling are possible reasons for the detrimental voltage fade. Doping of Li, Mn‐rich materials by Na, Mg, Al, Fe, Co, Ru, etc. is useful for stabilizing capacity and mitigating the discharge‐voltage decay of xLi2MnO3·(1–x)LiMO2 electrodes. Surface modifications by thin coatings of Al2O3, V2O5, AlF3, AlPO4, etc. or by gas treatment (for instance, by NH3) can also enhance voltage and capacity stability during cycling. This paper describes the recent literature results and ongoing efforts from our groups to improve the performance of Li, Mn‐rich materials. Focus is also on preparation of cobalt‐free cathodes, which are integrated layered‐spinel materials with high reversible capacity and stable performance.  相似文献   

19.
The layered oxide LiNiO2 (LNO) has been extensively investigated as a cathode active material for lithium‐ion batteries. Despite LNO's high gravimetric capacity, instability issues hinder its commercialization. It suffers from capacity loss during electrochemical cycling and is difficult to synthesize without defects. This is related to poor structural stability, leading to decomposition into the parent rock‐salt‐type oxide. In order to understand such phase transformations and to develop measures to inhibit them, the development of techniques able to image all atoms is crucial. In this study, the use of a fast, pixelated detector and 4D imaging in scanning transmission electron microscopy are explored to tackle this challenge. Selecting specific angular regions in the diffraction patterns and calculating virtual annular bright‐field images significantly enhances the contrast of the lithium atoms, such that all atoms are visible even in realistic samples. The developed technique is applied to image the layered‐to‐rock salt phase transition region. The data show that in this region, nickel atoms are in tetrahedral positions and the oxygen atoms are asymmetrically distributed. Taken together, the results shed light on the phase transformation mechanism at the atomic scale and can guide future research toward stabilizing LNO.  相似文献   

20.
A 3D‐printing technology and printed 3D lithium‐ion batteries (3D‐printed LIBs) based on LiMn0.21Fe0.79PO4@C (LMFP) nanocrystal cathodes are developed to achieve both ultrahigh rate and high capacity. Coin cells with 3D‐printed cathodes show impressive electrochemical performance: a capacity of 108.45 mAh g?1 at 100 C and a reversible capacity of 150.21 mAh g?1 at 10 C after 1000 cycles. In combination with simulation using a pseudo 2D hidden Markov model and experimental data of 3D‐printed and traditional electrodes, for the first time deep insight into how to achieve the ultrahigh rate performance for a cathode with LMFP nanocrystals is obtained. It is estimated that the Li‐ion diffusion in LMFP nanocrystal is not the rate‐limitation step for the rate to 100 C, however, that the electrolyte diffusion factors, such as solution intrinsic diffusion coefficient, efficiency porosity, and electrode thickness, will dominate ultrahigh rate performance of the cathode. Furthermore, the calculations indicate that the above factors play important roles in the equivalent diffusion coefficient with the electrode beyond a certain thickness, which determines the whole kinetic process in LIBs. This fundamental study should provide helpful guidance for future design of LIBs with superior electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号