首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Currently studied carbon nanotube‐silicon (CNT‐Si) solar cells are based on relatively small active areas (typically <0.15 cm2); increasing the active area generally leads to reduced power conversion efficiencies. This study reports CNT‐Si solar cells with active areas of more than 2 cm2 for single cells, yet still achieving cell efficiencies of about 10%, which is the first time for CNT‐Si solar cells with an active area more than 1 cm2 to reach the level for real applications. In this work, a controlled number of flattened highly conductive CNT strips is added, in simple arrangement, to form a CNT‐Si solar cell with CNT strips in which the middle film makes heterojunctions with Si while the top strips act as self‐similar top electrodes, like conventional metal grids. The CNT strips, directly condensed from as‐grown CNT films, not only improve the CNT‐Si junctions, but also enhance the conductivity of top electrodes without introducing contact barrier when the CNT strips are added onto the film. This property may facilitate the development of large‐area high‐performance CNT or graphene‐Si solar cells.  相似文献   

3.
All‐solid‐state thin film lithium batteries are promising devices to power the next generations of autonomous microsystems. Nevertheless, some industrial constraints such as the resistance to reflow soldering (260 °C) and to short‐circuiting necessitate the replacement of the lithium anode. In this study, a 2 V lithium‐ion system based on amorphous silicon nanofilm anodes (50–200 nm thick), a LiPON electrolyte, and a new lithiated titanium oxysulfide cathode Li1.2TiO0.5S2.1 is prepared by sputtering. The determination of the electrochemical behavior of each active material and of whole systems with different configurations allows the highlighting of the particular behavior of the LixSi electrode and the understanding of its consequences on the performance of Li‐ion cells. Lithium‐ion microbatteries processed with industrial tools and embedded in microelectronic packages exhibit particularly high cycle life (?0.006% cycle?1), ultrafast charge (80% capacity in 1 min), and tolerate both short‐circuiting and reflow soldering. Moreover, the perfect stability of the system allows the assignment of some modifications of the voltage curve and a slow and reversible capacity fade occurring in specific conditions, to the formation of Li15Si4 and to the expression of a “memory effect.” These new findings will help to optimize the design of future Li‐ion systems using nanosized silicon anodes.  相似文献   

4.
Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large‐scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon‐based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor‐based integration strategy where corrugation architecture enables ultraflexible and low‐cost solar cell modules from bulk monocrystalline large‐scale (127 × 127 cm2) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 µm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon‐based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 µm of the back contacts is shown that carries the solar cells segments.  相似文献   

5.
Silicon anodes are regarded as one of the most promising alternatives to graphite for high energy‐density lithium‐ion batteries (LIBs), but their practical applications have been hindered by high volume change, limited cycle life, and safety concerns. In this work, nonflammable localized high‐concentration electrolytes (LHCEs) are developed for Si‐based anodes. The LHCEs enable the Si anodes with significantly enhanced electrochemical performances comparing to conventional carbonate electrolytes with a high content of fluoroethylene carbonate (FEC). The LHCE with only 1.2 wt% FEC can further improve the long‐term cycling stability of Si‐based anodes. When coupled with a LiNi0.3Mn0.3Co0.3O2 cathode, the full cells using this nonflammable LHCE can maintain >90% capacity after 600 cycles at C/2 rate, demonstrating excellent rate capability and cycling stability at elevated temperatures and high loadings. This work casts new insights in electrolyte development from the perspective of in situ Si/electrolyte interphase protection for high energy‐density LIBs with Si anodes.  相似文献   

6.
7.
8.
Silicon is promising as a high energy anode for next‐generation lithium‐ion batteries. However, severe capacity fading upon cycling associated with huge volume change is still an obstacle for silicon toward practical applications. Herein, the authors report that Si‐substituted Zn2(GeO4)0.8(SiO4)0.2 nanowires can effectively suppress volume expansion effect, exhibiting high specific capacity (1274 mA h g?1 at 0.2 A g?1 after 700 cycles) and ultralong cycling stability (2000 cycles at 5 A g?1 with a capacity decay rate of 0.008% per cycle), which represents outstanding comprehensive performance. The superior performance is ascribed to the substitution of Si atom that imparts to the nanowires not only high reactivity and reversibility, but also the unique stress‐relieved property upon lithiation which is further confirmed by detailed density‐functional theory computation. This work provides a new guideline for designing high‐performance Si‐based materials toward practical energy storage applications.  相似文献   

9.
This paper computationally demonstrates a new photovoltaic mechanism that generates power from incoherent, below‐bandgap (THz) excitations of conduction band electrons in silicon. A periodic sawtooth potential, realized through elastic strain gradients along a 100 nm thick Si slab, biases the oscillatory motion of excited electrons, which preferentially jump and relax into the adjacent period on the right to generate a net current. The magnitude of the ratchet current increases with photon energy (20, 50, and 100 meV) and irradiance (≈MW cm?2), which control the probability of photon scattering, and peaks as a function of the well depth of the ratchet potential, and the dominant mode of energy loss (the 62 meV intervalley phonon). The internal power conversion efficiency of the ratchet has a maximum of 0.0083% at a photon energy of 100 meV, due to inefficiencies caused by isotropic scattering. This new photovoltaic mechanism uses wasted below‐bandgap absorptions to enhance the directional diffusion of charge carriers and could be used to augment the efficiency of traditional photovoltaics.  相似文献   

10.
The lithiation mechanism of methylated amorphous silicon, a‐Si1?x(CH3)x:H, with various methyl contents (x = 0 ‐ 0.12) is investigated using operando attenuated total reflection Fourier transform infrared spectroscopy. As in hydrogenated amorphous silicon, a‐Si:H, the first lithiation proceeds via a two‐phase mechanism. The concentration of the invading Li‐rich phase nonmonotonously depends on the methyl content of the active material. This behavior is tentatively explained by two distinct effects: a softening of the material due to a methyl‐induced lowering of its reticulation degree and its cohesion, and the presence of nanovoids at high enough methyl content.  相似文献   

11.
In addition to a good perovskite light absorbing layer, the hole and electron transport layers play a crucial role in achieving high‐efficiency perovskite solar cells. Here, a simple, one‐step, solution‐based method is introduced for fabricating high quality indium‐doped titanium oxide electron transport layers. It is shown that indium‐doping improves both the conductivity of the transport layer and the band alignment at the ETL/perovskite interface compared to pure TiO2, boosting the fill‐factor and voltage of perovskite cells. Using the optimized transport layers, a high steady‐state efficiency of 17.9% for CH3NH3PbI3‐based cells and 19.3% for Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3‐based cells is demonstrated, corresponding to absolute efficiency gains of 4.4% and 1.2% respectively compared to TiO2‐based control cells. In addition, a steady‐state efficiency of 16.6% for a semi‐transparent cell is reported and it is used to achieve a four‐terminal perovskite‐silicon tandem cell with a steady‐state efficiency of 24.5%.  相似文献   

12.
All‐solid‐state batteries (ASSBs) with silicon anodes are promising candidates to overcome energy limitations of conventional lithium‐ion batteries. However, silicon undergoes severe volume changes during cycling leading to rapid degradation. In this study, a columnar silicon anode (col‐Si) fabricated by a scalable physical vapor deposition process (PVD) is integrated in all‐solid‐state batteries based on argyrodite‐type electrolyte (Li6PS5Cl, 3 mS cm?1) and Ni‐rich layered oxide cathodes (LiNi0.9Co0.05Mn0.05O2, NCM) with a high specific capacity (210 mAh g?1). The column structure exhibits a 1D breathing mechanism similar to lithium, which preserves the interface toward the electrolyte. Stable cycling is demonstrated for more than 100 cycles with a high coulombic efficiency (CE) of 99.7–99.9% in full cells with industrially relevant areal loadings of 3.5 mAh cm?2, which is the highest value reported so far for ASSB full cells with silicon anodes. Impedance spectroscopy revealed that anode resistance is drastically reduced after first lithiation, which allows high charging currents of 0.9 mA cm?2 at room temperature without the occurrence of dendrites and short circuits. Finally, in‐operando monitoring of pouch cells gave valuable insights into the breathing behavior of the solid‐state cell.  相似文献   

13.
Silicon‐based anodes are an appealing alternative to graphite for lithium‐ion batteries because of their extremely high capacity. However, poor cycling stability and slow kinetics continue to limit the widespread use of silicon in commercial batteries. Performance improvement has been often demonstrated in nanostructured silicon electrodes, but the reaction mechanisms involved in the electrochemical lithiation of nanoscale silicon are not well understood. Here, in‐situ synchrotron X‐ray diffraction is used to monitor the subtle structural changes occurring in Si nanoparticles in a Si‐C composite electrode during lithiation. Local analysis by electron energy‐loss spectroscopy and transmission electron microscopy is performed to interrogate the nanoscale morphological changes and phase evolution of Si particles at different depths of discharge. It is shown that upon lithiation, Si nanoparticles behave quite differently than their micrometer‐sized counterparts. Although both undergo an electrochemical amorphization, the micrometer‐sized silicon exhibits a linear transformation during lithiation, while a two‐step process occurs in the nanoscale Si. In the first half of the discharge, lithium reacts with surfaces, grain boundaries and planar defects. As the reaction proceeds and the cell voltage drops, lithium consumes the crystalline core transforming it into amorphous LixSi with a primary particle size of just a few nanometers. Unlike the bulk silicon electrode, no Li15Si4 or other crystalline LixSi phases were formed in nanoscale Si at the fully‐lithiated state.  相似文献   

14.
Realizing solar‐to‐hydrogen (STH) efficiencies close to 20% using low‐cost semiconductors remains a major step toward accomplishing the practical viability of photoelectrochemical (PEC) hydrogen generation technologies. Dual‐absorber tandem cells combining inexpensive semiconductors are a promising strategy to achieve high STH efficiencies at a reasonable cost. Here, a perovskite photovoltaic biased silicon (Si) photoelectrode is demonstrated for highly efficient stand‐alone solar water splitting. A p+nn+ ‐Si/Ti/Pt photocathode is shown to present a remarkable photon‐to‐current efficiency of 14.1% under biased condition and stability over three days under continuous illumination. Upon pairing with a semitransparent mixed perovskite solar cell of an appropriate bandgap with state‐of‐the‐art performance, an unprecedented 17.6% STH efficiency is achieved for self‐driven solar water splitting. Modeling and analysis of the dual‐absorber PEC system reveal that further work into replacing the noble‐metal catalyst materials with earth‐abundant elements and improvement of perovskite fill factor will pave the way for the realization of a low‐cost high‐efficiency PEC system.  相似文献   

15.
16.
High‐capacity electrode materials play a vital role for high‐energy‐density lithium‐ion batteries. Silicon (Si) has been regarded as a promising anode material because of its outstanding theoretical capacity, but it suffers from an inherent volume expansion problem. Binders have demonstrated improvements in the electrochemical performance of Si anodes. Achieving ultrahigh‐areal‐capacity Si anodes with rational binder strategies remains a significant challenge. Herein, a binder‐lithiated strategy is proposed for ultrahigh‐areal‐capacity Si anodes. A hard/soft modulated trifunctional network binder (N‐P‐LiPN) is constructed by the partially lithiated hard polyacrylic acid as a framework and partially lithiated soft Nafion as a buffer via the hydrogen binding effect. N‐P‐LiPN has strong adhesion and mechanical properties to accommodate huge volume change of the Si anode. In addition, lithium‐ions are transferred via the lithiated groups of N‐P‐LiPN, which significantly enhances the ionic conductivity of the Si anode. Hence, the Si@N‐P‐LiPN electrodes achieve the highest initial Coulombic efficiency of 93.18% and a stable cycling performance for 500 cycles at 0.2 C. Specially, Si@N‐P‐LiPN electrodes demonstrate an ultrahigh‐areal‐capacity of 49.59 mAh cm?2. This work offers a new approach for inspiring the battery community to explore novel binders for next‐generation high‐energy‐density storage devices.  相似文献   

17.
18.
Due to the high cost of silicon photovoltaics there is currently great interest in finding alternative semiconductor materials for light harvesting devices. Single‐walled carbon nanotubes are an allotrope of carbon with unique electrical and optical properties and are promising as future photovoltaic materials. It is thus important to investigate the methods of exploiting their properties in photovoltaic devices. In addition to already extensive research using carbon nanotubes in organic photovoltaics and photoelectrochemical cells, another way to do this is to combine them with a relatively well understood model semiconductor such as silicon. Nanotube‐silicon heterojunction solar cells are a recent photovoltaic architecture with demonstrated power conversion efficiencies of up to ~14% that may in part exploit the photoactivity of carbon nanotubes.  相似文献   

19.
An attractive method to broaden the absorption bandwidth of polymer/fullerene‐based bulk heterojunction (BHJ) solar cells is to blend near infrared (near‐IR) sensitizers into the host system. Axial substitution of silicon phthalocyanines (Pcs) opens a possibility to modify the chemical, thermodynamic, electronic, and optical properties. Different axial substitutions are already designed to modify the thermodynamic properties of Pcs, but the impact of extending the π‐conjugation of the axial ligand on the opto‐electronic properties, as a function of the length of the alkyl spacer, has not been investigated yet. For this purpose, a novel series of pyrene‐substituted silicon phthalocyanines (SiPc‐Pys) with varying lengths of alkyl chain tethers are synthesized. The UV–vis and external quantum efficiency (EQE) results exhibit an efficient near IR sensitization up to 800 nm, clearly establishing the impact of the pyrene substitution. This yields an increase of over 20% in the short circuit current density (J SC) and over 50% in the power conversion efficiency (PCE) for the dye‐sensitized ternary device. Charge generation, transport properties, and microstructure are studied using different advanced technologies. Remarkably, these results provide guidance for the diverse and judicious selection of dye sensitizers to overcome the absorption limitation and achieve high efficiency ternary solar cells.  相似文献   

20.
In order to assign the absolute configurations of 8‐tert‐butyl‐2‐hydroxy‐7‐methoxy‐8‐methyl‐9‐oxa‐6‐azaspiro[4.5]dec‐6‐en‐10‐one ( 2a , 2b ), their esters ( 5a , 5b , 5c , 5d ) with (R)‐ or (S)‐2‐methoxyphenylacetic acid ( 4a , 4b ) have been synthesized. The absolute configurations of these compounds have been determined on the basis of NOESY correlations between the protons of the tert‐butyl group and the cyclopentane fragment of the molecules. The crucial part of this analysis was assignment of the absolute configuration at C‐5. Additionally, by calculation of the chemical shift anisotropy, δRS, for the relevant protons, it was also possible to confirm the absolute configurations at the C‐2 centres of compounds 2a , 2b and 5a , 5b , 5c , 5d . Chirality, 25:422–426, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号