首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The record efficiency of the state‐of‐the‐art polymer solar cells (PSCs) is rapidly increasing, due to the discovery of high‐performance photoactive donor and acceptor materials. However, strong questions remain as to whether such high‐efficiency PSCs can be produced by scalable processes. This paper reports a high power conversion efficiency (PCE) of 13.5% achieved with single‐junction ternary PSCs based on PTB7‐Th, PC71BM, and COi8DFIC fabricated by slot‐die coating, which shows the highest PCE ever reported in PSCs fabricated by a scalable process. To understand the origin of the high performance of the slot‐die coated device, slot‐die coated photoactive films and devices are systematically investigated. These results indicate that the good performance of the slot‐die PSCs can be due to a favorable molecule‐structure and film‐morphology change by introducing 1,8‐diiodooctane and heat treatment, which can lead to improved charge transport with reduced carrier recombination. The optimized condition is then used for the fabrication of large‐area modules and also for roll‐to‐roll fabrication. The slot‐die coated module with 30 cm2 active‐area and roll‐to‐roll produced flexible PSC has shown 8.6% and 9.6%, respectively. These efficiencies are the highest in each category and demonstrate the strong potential of the slot‐die coated ternary system for commercial applications.  相似文献   

3.
4.
The challenge of continuous printing in high‐efficiency large‐area organic solar cells is a key limiting factor for their widespread adoption. A materials design concept for achieving large‐area, solution‐coated all‐polymer bulk heterojunction solar cells with stable phase separation morphology between the donor and acceptor is presented. The key concept lies in inhibiting strong crystallization of donor and acceptor polymers, thus forming intermixed, low crystallinity, and mostly amorphous blends. Based on experiments using donors and acceptors with different degree of crystallinity, the results show that microphase separated donor and acceptor domain sizes are inversely proportional to the crystallinity of the conjugated polymers. This methodology of using low crystallinity donors and acceptors has the added benefit of forming a consistent and robust morphology that is insensitive to different processing conditions, allowing one to easily scale up the printing process from a small‐scale solution shearing coater to a large‐scale continuous roll‐to‐roll (R2R) printer. Large‐area all‐polymer solar cells are continuously roll‐to‐roll slot die printed with power conversion efficiencies of 5%, with combined cell area up to 10 cm2. This is among the highest efficiencies realized with R2R‐coated active layer organic materials on flexible substrate.  相似文献   

5.
6.
7.
8.
9.
Copolymers based on dithieno[3,2‐b:2′,3′‐d]silole (DTS) and dithienylthiazolo[5,4‐d]thiazole (TTz) are synthesized and tested in an all‐solution roll process for polymer solar cells (PSCs). Fabrication of polymer:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) solar cells is done on a previously reported compact coating/printing machine, which enables the preparation of PSCs that are directly scalable with full roll‐to‐roll processing. The positioning of the side‐chains on the thiophene units proves to be very significant in terms of solubility of the polymers and consequently has a major impact on the device yield and process control. The most successful processing is accomplished with the polymer, PDTSTTz‐4 , that has the side‐chains situated in the 4‐position on the thiophene units. Inverted PSCs based on PDTSTTz‐4 demonstrate high fill factors, up to 59%, even with active layer thicknesses well above 200 nm. Power conversion efficiencies of up to 3.5% can be reached with the roll‐coated PDTSTTz‐4 :PCBM solar cells that, together with good process control and high device yield, designate PDTSTTz‐4 as a convincing candidate for high‐throughput roll‐to‐roll production of PSCs.  相似文献   

10.
The use of processing additives has emerged as a powerful approach for the optimization of active layer performance in organic photovoltaic devices. However, definitive physical mechanisms explaining the impact of additives have not yet been determined. To elucidate the role of additives, we have studied the time evolution of structure in polymer‐fullerene films blade‐coated from additive containing solutions using in‐situ spectroscopic ellipsometry and UV–vis transmission. Additives that are poor solvents for poly(3‐hexylthiophene) (P3HT), such as 1,8‐octanedithiol, and additives that are good solvents for P3HT, such as 1‐chloronapthalene, both promote improved polymer order, phase segregation, and device performance. Regardless of the presence or type of additive, the polymer order develops under conditions of extreme supersaturation. Additives, regardless of whether they are solvents for P3HT, promote earlier polymer aggregation compared to additive ‐ free solutions presumably by degrading the solvent quality. We find evidence that the details of the final film morphology may be linked to the influence of the substrate and long‐time film plasticization in the cases of the non‐solvent and solvent respectively.  相似文献   

11.
Semitransparent perovskite solar cells (st‐PSCs) have received remarkable interest in recent years because of their great potential in applications for solar window, tandem solar cells, and flexible photovoltaics. However, all reported st‐PSCs require expensive transparent conducting oxides (TCOs) or metal‐based thin films made by vacuum deposition, which is not cost effective for large‐scale fabrication: the cost of TCOs is estimated to occupy ≈75% of the manufacturing cost of PSCs. To address this critical challenge, this study reports a low‐temperature and vacuum‐free strategy for the fabrication of highly efficient TCO‐free st‐PSCs. The TCO‐free st‐PSC on glass exhibits 13.9% power conversion efficiency (PCE), and the four‐terminal tandem cell made with the st‐PSC top cell and c‐Si bottom cell shows an overall PCE of 19.2%. Due to the low processing temperature, the fabrication of flexible st‐PSCs is demonstrated on polyethylene terephthalate and polyimide, which show excellent stability under repeated bending or even crumbing.  相似文献   

12.
Dye‐sensitized solar cells (DSCs) have attracted great interest as one of the most promising photovoltaic technologies, and transparent DSCs show potential applications as photovoltaic windows. However, the competition between light absorption for photocurrent generation and light transmittance for obtaining high transparency limits the performance of transparent DSCs. Here, transparent DSCs exhibiting a high light transmittance of 60.3% and high energy conversion efficiency (3.66%) are reported. The strategy is to create a cocktail system composed of ultraviolet and near‐infrared dye sensitizers that selectively and efficiently harvest light in the invisible or low‐eye‐sensitivity region while transmitting light in high‐eye‐sensitivity regions. This new design provides a reasonable approach for realizing high efficiency and transparency DSCs that have potential applications as photovoltaic windows.  相似文献   

13.
14.
To ensure laboratory‐to‐industry transfer of next‐generation energy harvesting organic solar cells (OSCs), it is necessary to develop flexible OSC modules that can be produced on a continuous roll‐to‐roll basis and to apply an all‐solution process. In this study, nonfullerene acceptors (NFAs)‐based donor polymer, SMD2, is newly designed and synthesized to continuously fabricate high‐performance flexible OSC modules. Also, multifunctional hole transport layers (HTLs), WO3/HTL solar bilayer HTLs, are developed and applied via an all‐solution process called “ProcessOne” into inverted structure. SMD2, the donor terpolymer, has a deep highest occupied molecular orbital (HOMO) level and can achieve a power conversion efficiency (PCE) of 11.3% with NFAs without any pre‐/post‐treatment because of its optimal balance between crystallinity and miscibility. Furthermore, the integration of multifunctional HTLs enables the recovery of the drop in open circuit voltage (VOC) caused by a mismatch in energy levels between the deep HOMO level of the NFAs‐based bulk‐heterojunction layer and the solution‐processed HTLs. Also, the photostability under ultraviolet‐exposure necessary for “ProcessOne” is greatly improved because of the integration of multifunctional HTLs. Consequently, because of the synergistic effects of these approaches, the flexible OSC modules fabricated in an industrial production line have a PCE of 5.25% (Pmax = 419.6 mW) on an active area of 80 cm2.  相似文献   

15.
In consideration of the unique advantages of new non‐fullerene acceptors and the tandem‐junction structure, organic photovoltaics (OPVs) based on them are very promising. Studies related to this emerging area began in 2016 with achieved power conversion efficiencies (PCEs) of 8–10%, which have now been boosted to 17%. In this essay, the construction of high‐performance OPVs is discussed, with a focus on combining the advantages of new non‐fullerene acceptors and the tandem‐junction structure. In order to achieve higher PCEs, methods to enable high short‐circuit current density, open‐circuit voltage, and fill factor are discussed. In addition, the stability and reproducibility of high‐efficiency OPVs are also addressed. Herein, it is forecast that the new non‐fullerene acceptors‐based tandem‐junction OPVs will become the next big wave in the field and achieve high PCEs over 20% in the near future. Some promising research directions on this emerging hot topic are proposed which may further push the field into the 25% high efficiency era and considerably advance the technology beyond laboratory research.  相似文献   

16.
Continuous flow methods are employed for the controlled polymerization of the roll‐to‐roll (R2R) compatible polymer PBDTTTz‐4 including optimization and upscaling experiments. The polymerization rate and materials’ quality can be increased significantly with the continuous flow method where reaction times down to 10 min afforded PBDTTTz‐4 with high molecular weight and a constant quality. The flow method enables full control of the molecular weight via tuning of the flow speed, catalyst loading, and temperature and avoids variation in materials’ quality associated with conventional batch synthesis. Upscaling from 300 mg batch synthesis to 10 g flow synthesis affords PBDTTTz‐4 with a production rate of up to 120 g day?1 for a very simple in‐house build flow reactor. An average power conversion efficiency (PCE) of 3.5% is achieved on a small scale (1 cm2) and an average PCE of 3.3% is achieved on a large scale (29 cm2). This shows that small device efficiencies can be scaled when using full R2R processing of flexible and encapsulated carbon‐based modules without the use of vacuum, indium‐tin‐oxide, or silver, with the best achieving a PCE of 3.8% PCE.  相似文献   

17.
18.
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer.  相似文献   

19.
Indium‐tin‐oxide‐free (ITO‐free) polymer solar cells with composite electrodes containing current‐collecting grids and a semitransparent poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up‐scaling of the length of the solar cell from 1 to 6 cm and the effect of the grid line resistance are explored for a series of devices. Laser‐beam‐induced current (LBIC) mapping is used for quality control of the devices. A theoretical modeling study is presented that enables the identification of the most rational cell dimension for the grids with different resistances. The performance of ITO‐free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large‐area devices at simulated 1 Sun illumination. The generated current uniformity increases with decreasing light intensities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号