首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The safety hazards and low Coulombic efficiency originating from the growth of lithium dendrites and decomposition of the electrolyte restrict the practical application of Li metal batteries (LMBs). Inspired by the low cost of low concentration electrolytes (LCEs) in industrial applications, dual‐salt LCEs employing 0.1 m Li difluorophosphate (LiDFP) and 0.4 m LiBOB/LiFSI/LiTFSI are proposed to construct a robust and conductive interphase on a Li metal anode. Compared with the conventional electrolyte using 1 m LiPF6, the ionic conductivity of LCEs is reduced but the conductivity decrement of the separator immersed in LCEs is moderate, especially for the LiDFP–LiFSI and LiDFP–LiTFSI electrolytes. The accurate Coulombic efficiency (CE) of the Li||Cu cells increases from 83.3% (electrolyte using 1 m LiPF6) to 97.6%, 94.5%, and 93.6% for LiDFP–LiBOB, LiDFP–LiFSI, and LiDFP–LiTFSI electrolytes, respectively. The capacity retention of Li||LiFePO4 cells using the LiDFP–LiBOB electrolyte reaches 95.4% along with a CE over 99.8% after 300 cycles at a current density of 2.0 mA cm?2 and the capacity reaches 103.7 mAh g?1 at a current density of up to 16.0 mA cm?2. This work provides a dual‐salt LCE for practical LMBs and presents a new perspective for the design of electrolytes for LMBs.  相似文献   

2.
Lithium–metal fluoride batteries promise significantly higher energy density than the state‐of‐the‐art lithium‐ion batteries and lithium–sulfur batteries. Unfortunately, commercialization of metal fluoride cathodes is prevented by their high resistance, irreversible structural change, and rapid degradation. In this study, a substantial boost in metal fluoride (MF) cathode stability by designing nanostructure with two layers of protective shells—one deposited ex situ and the other in situ is demonstrated. Such methodology achieves over 90% capacity retention after 300 charge–discharge cycles, producing the first report on FeF3 as a cathode material, where a very high capacity utilization in combination with excellent stability is approaching the level needed for practical applications of FeF3. The cathode solid electrolyte interphase (CEI) containing lithium oxalate and B? F bond containing anions is found to effectively protect the cathode material from direct contact with electrolytes, thus greatly suppressing the dissolution of Fe. Quantum chemistry and molecular dynamics calculations provide unique insights into the mechanisms of CEI layer formation. As a result, this work not only demonstrates unprecedented performance, but also provides the reader with a better fundamental understanding of electrochemical behavior of MF cathodes and the positive impact observed with the application of a lithium bis(oxalato)borate salt in the electrolyte.  相似文献   

3.
Advancements in portable electronic devices and electric powered transportation has drawn more attention to high energy density batteries, especially lithium–sulfur batteries due to the low cost of sulfur and its high energy density. However, the lithium–sulfur battery is still quite far from commercialization mostly because of incompatibility between all major components of the battery—the cathode, anode, and electrolyte. Here a methodology is demonstrated that shows promise in significantly improving battery stability by multilayer encapsulation of sulfur particles, while using conventional electrolytes, which allows a long cycle life and an improved Coulombic efficiency battery at low electrolyte feeding. The multilayer encapsulated sulfur battery demonstrates a Coulombic efficiency as high as 98%, when a binder‐free electrode is used. It is also shown that the all‐out self‐discharge of the cell after 168 h can be reduced from 34% in the regular sulfur battery to less than 9% in the battery with the multilayer encapsulated sulfur electrode.  相似文献   

4.
Li metal can potentially deliver much higher specific capacity than commercially used anodes. Nevertheless, because of its poor reversibility, abundant excess Li (usually more than three times) is required in Li metal batteries, leading to higher costs and decreased energy density. Here, a concentrated lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)–lithium nitrate (LiNO3)–lithium bis(fluorosulfonyl)imide (LiFSI) ternary‐salts electrolyte is introduced to realize a high stable Li metal full‐cell with only a slight excess of Li. LiNO3 and LiFSI contribute to the formation of stable Li2O–LiF‐rich solid electrolyte interface layers, and LiTFSI helps to stabilize the electrolyte under high concentration. Li metal in the electrolyte remains stable over 450 cycles and the average Coulombic efficiency reaches 99.1%. Moreover, with 0.5 × excess Li metal, the Coulombic efficiency of Li metal in the LiTFSI–LiNO3–LiFSI reaches 99.4%. The electrolyte also presents high stability to the LiFePO4 cathode, the capacity retention after 500 cycles is 92.0% and the Coulombic efficiency is 99.8%. A Li metal full‐cell with only 0.44 × excess Li is also assembled, it remains stable over 70 cycles and 83% of the initial capacity is maintained after 100 cycles.  相似文献   

5.
Development of electrolytes that simultaneously have high ionic conductivity, wide electrochemical window, and lithium dendrite suppression ability is urgently required for high‐energy lithium‐metal batteries (LMBs). Herein, an electrolyte is designed by adding a countersolvent into LiFSI/DMC (lithium bis(fluorosulfonyl)amide/dimethyl carbonate) electrolytes, forming countersolvent electrolytes, in which the countersolvent is immiscible with the salt but miscible with the carbonate solvents. The solvation structure and unique properties of the countersolvent electrolyte are investigated by combining electroanalytical technology with a Molecular Dynamics simulation. Introducing the countersolvent alters the coordination shell of Li+ cations and enhances the interaction between Li+ cations and FSI? anions, which leads to the formation of a LiF‐rich solid electrolyte interphase, arising from the preferential reduction of FSI? anions. Notably, the countersolvent electrolyte suppresses Li dendrites and enables stable cycling performance of a Li||NCM622 battery at a high cut‐off voltage of 4.6 V at both 25 and 60 °C. This study provides an avenue to understand and design electrolytes for high‐energy LMBs in the future.  相似文献   

6.
This study demonstrates for the first time a room temperature sodium–sulfur (RT Na–S) full cell assembled based on a pristine hard carbon (HC) anode combined with a nanostructured Na2S/C cathode. The development of cells without the demanding, time‐consuming and costly pre‐sodiation of the HC anode is essential for the realization of practically relevant RT Na–S prototype batteries. New approaches for Na2S/C cathode fabrication employing carbothermal reduction of Na2SO4 at varying temperatures (660 to 1060 °C) are presented. Initial evaluation of the resulting cathodes in a dedicated cell setup reveals 36 stable cycles and a capacity of 740 mAh gS?1, which correlates to ≈85% of the maximum value known from literature on Na2S‐based cells. The Na2S/C cathode with the highest capacity utilization is implemented into a full cell concept applying a pristine HC anode. Various full cell electrolyte compositions with fluoroethylene carbonate (FEC) additive have been combined with a special charging procedure during the first cycle supporting in situ solid electrolyte interphase (SEI) formation on the HC anode to obtain increased cycling stability and cathode utilization. The best performing cell setup has delivered a total of 350 mAh gS?1, representing the first functional full cell based on a Na2S/C cathode and a pristine HC anode today.  相似文献   

7.
Lithium/selenium‐sulfur batteries have recently received considerable attention due to their relatively high specific capacities and high electronic conductivity. Different from the traditional encapsulation strategy for suppressing the shuttle effect, an alternative approach to directly bypass polysulfide/polyselenide formation via rational solid‐electrolyte interphase (SEI) design is demonstrated. It is found that the robust SEI layer that in situ forms during charge/discharge via interplay between rational cathode design and optimal electrolytes could enable solid‐state (de)lithiation chemistry for selenium‐sulfur cathodes. Hence, Se‐doped S22.2Se/Ketjenblack cathodes can attain a high reversible capacity with minimal shuttle effects during long‐term and high rate cycling. Moreover, the underlying solid‐state (de)lithiation mechanism, as evidenced by in situ 7Li NMR and in operando synchrotron X‐ray probes, further extends the optimal sulfur confinement pore size to large mesopores and even macropores that have been long considered as inferior sulfur or selenium host materials, which play a crucial role in developing high volumetric energy density batteries. It is expected that the findings in this study will ignite more efforts to tailor the compositional/structure characteristics of the SEI layers and the related ionic transport across the interface by electrode structure, electrolyte solvent, and electrolyte additive screening.  相似文献   

8.
Calcium represents a promising anode for the development of high‐energy‐density, low‐cost batteries. However, a lack of suitable electrolytes has restricted the development of rechargeable batteries with a Ca anode. Furthermore, to achieve a high energy density system, sulfur would be an ideal cathode to couple with the Ca anode. Unfortunately, a reversible calcium‐sulfur (Ca‐S) battery has not yet been reported. Herein, a basic study of a reversible nonaqueous room‐temperature Ca‐S battery is presented. The reversibility of the Ca‐S chemistry and high utilization of the sulfur cathode are enabled by employing a Li+‐ion‐mediated calcium‐based electrolyte. Mechanistic insights pursued by spectroscopic, electrochemical, microscopic, and theoretical simulation (density functional theory) investigations imply that the Li+‐ions in the Ca‐electrolyte stimulate the reactivation of polysulfide/sulfide species. The coordination of lithium to sulfur reduces the formation of sturdy Ca‐S ionic bonds, thus boosting the reversibility of the Ca‐S chemistry. In addition, the presence of Li+‐ions facilitates the ionic charge transfer both in the electrolyte and across the solid electrolyte interphase layer, consequently reducing the interfacial and bulk impedance of Ca‐S batteries. As a result, both the utilization of active sulfur in the cathode and the discharge voltage of Ca‐S batteries are significantly improved.  相似文献   

9.
Safety, nontoxicity, and durability directly determine the applicability of the essential characteristics of the lithium (Li)‐ion battery. Particularly, for the lithium–sulfur battery, due to the low ignition temperature of sulfur, metal lithium as the anode material, and the use of flammable organic electrolytes, addressing security problems is of increased difficulty. In the past few years, two basic electrolyte systems are studied extensively to solve the notorious safety issues. One system is the conventional organic liquid electrolyte, and the other is the inorganic solid‐state or quasi‐solid‐state composite electrolyte. Here, the recent development of engineered liquid electrolytes and design considerations for solid electrolytes in tackling these safety issues are reviewed to ensure the safety of electrolyte systems between sulfur cathode materials and the lithium‐metal anode. Specifically, strategies for designing and modifying liquid electrolytes including introducing gas evolution, flame, aqueous, and dendrite‐free electrolytes are proposed. Moreover, the considerations involving a high‐performance Li+ conductor, air‐stable Li+ conductors, and stable interface performance between the sulfur cathode and the lithium anode for developing all‐solid‐state electrolytes are discussed. In the end, an outlook for future directions to offer reliable electrolyte systems is presented for the development of commercially viable lithium–sulfur batteries.  相似文献   

10.
The last decade has seen considerable advancements in the development of solid electrolytes for solid‐state battery applications, with particular attention being paid to sulfide superionic conductors. Importantly, the intrinsic electrochemical instability of these high‐performance separators highlights the notion that further progress in the field of solid‐state batteries is contingent on the optimization of component material interfaces in order to secure high energy and power densities, while maintaining device safety and a practical cycle life. On the cathode side, the need for a protective coating to inhibit solid electrolyte degradation is clear; however, a mechanistic understanding of the coating functionality remains unresolved, and there is still much room for improvement regarding the methodology and associated material properties. Herein, the essential requirements for a suitable coating are specified and fundamental considerations are discussed in detail. Additionally, this article will provide an overview of the various material classes, assessment protocols and practical coating methods, as well as an outlook on the development of coatings for cathode active materials in thiophosphate‐based solid‐state batteries.  相似文献   

11.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

12.
Silicon anodes are regarded as one of the most promising alternatives to graphite for high energy‐density lithium‐ion batteries (LIBs), but their practical applications have been hindered by high volume change, limited cycle life, and safety concerns. In this work, nonflammable localized high‐concentration electrolytes (LHCEs) are developed for Si‐based anodes. The LHCEs enable the Si anodes with significantly enhanced electrochemical performances comparing to conventional carbonate electrolytes with a high content of fluoroethylene carbonate (FEC). The LHCE with only 1.2 wt% FEC can further improve the long‐term cycling stability of Si‐based anodes. When coupled with a LiNi0.3Mn0.3Co0.3O2 cathode, the full cells using this nonflammable LHCE can maintain >90% capacity after 600 cycles at C/2 rate, demonstrating excellent rate capability and cycling stability at elevated temperatures and high loadings. This work casts new insights in electrolyte development from the perspective of in situ Si/electrolyte interphase protection for high energy‐density LIBs with Si anodes.  相似文献   

13.
Minimizing electrolyte use is essential to achieve high practical energy density of lithium–sulfur (Li–S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO3? as a high‐donor‐number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean‐electrolyte Li–S batteries. The NO3? anion elevates the solubility of the sulfur species based on its high electron donating ability, achieving a high sulfur utilization of above 1200 mA h g?1. Furthermore, the anion suppresses electrolyte decomposition on the Li metal by regulating the lithium ion (Li+) solvation sheath, enhancing the cycle performance of the lean electrolyte cell. By understanding the anionic effects, this work demonstrates the potential of the high‐DN electrolyte, which is beneficial for both the cathode and anode of Li–S batteries.  相似文献   

14.
Developing high‐voltage Mg‐compatible electrolytes (>3.0 V vs Mg) still remains to be the biggest R&D challenge in the area of nonaqueous rechargeable Mg batteries. Here, the key design concepts toward exploring new boron‐based Mg salts in a specific way of highlighting the implications of anions are proposed for the first time. The well‐defined boron‐centered anion‐based magnesium electrolyte (BCM electrolyte) is successfully presented by facile one‐step mixing of tris(2H‐hexafluoroisopropyl) borate and MgF2 in 1,2‐dimethoxyethane, in which the structures of anions have been thoroughly investigated via mass spectrometry accompanied by NMR and Raman spectra. The first all‐round practical BCM electrolyte fulfills all requirements of easy synthesis, high ionic conductivity, wide potential window (3.5 V vs Mg), compatibility with electrophilic sulfur, and simultaneously noncorrosivity to coin cell assemblies. When utilizing the BCM electrolyte, the fast‐kinetics selenium/carbon (Se/C) cathode achieves the best rate capability and the sulfur/carbon (S/C) cathode exhibits an impressive prolonged cycle life than previously published reports. The BCM electrolyte offers the most promising avenue to eliminate the major roadblocks on the way to high‐voltage Mg batteries and the design concepts can shed light on future exploration directions toward high‐voltage Mg‐compatible electrolytes.  相似文献   

15.
Rechargeable metal–sulfur batteries encounter severe safety hazards and fast capacity decay, caused by the flammable and shrinkable separator and unwanted polysulfide dissolution under elevated temperatures. Herein, a multifunctional Janus separator is designed by integrating temperature endurable electrospinning polyimide nonwovens with a copper nanowire‐graphene nanosheet functional layer and a rigid lithium lanthanum zirconium oxide‐polyethylene oxide matrix. Such architecture offers multifold advantages: i) intrinsically high dimensional stability and flame‐retardant capability, ii) excellent electrolyte wettability and effective metal dendritic growth inhibition, and iii) powerful physical blockage/chemical anchoring capability for the shuttled polysulfides. As a consequence, the as constructed lithium–sulfur battery using a pure sulfur cathode displays an outstandingly high discharge capacity of 1402.1 mAh g?1 and a record high cycling stability (approximately average 0.24% capacity decay per cycle within 300 cycles) at 80 °C, outperforming the state‐of‐the‐art results in the literature. Promisingly, a high sulfur mass loading of ≈3.0 mg cm?2 and a record low electrolyte/sulfur ratio of 6.0 are achieved. This functional separator also performs well for a high temperature magnesium–sulfur battery. This work demonstrates a new concept for high performance metal–sulfur battery design and promises safe and durable operation of the next generation energy storage systems.  相似文献   

16.
Solid‐state lithium–sulfur batteries (SSLSBs) are highly appealing for electrochemical energy devices because of their promising theoretical energy density. An intensive acquaintance of SSLS interfacial behavior is of importance in gaining fundamental knowledge of working/failure mechanisms and clarifying further optimized design of advanced batteries. Herein, a direct visualization of the evolution of both component and structure is present inside a working SSLSB. In situ Raman spectroscopy clearly sheds light on the potential‐dependent evolution of sulfur speciation via subtly fabricating the electrochemical cell. Moreover, the real‐time optical microscopic views show that the irreversible structure deformation of solid‐state electrolytes (SSEs), which results from the decomposition of dissolved polysulfides (PSs) and gas generation inside the SSE, directly causes the fracture of sulfur cathode with the cycling times increasing. Furthermore, by an atomic force microscopy study, the evolving structure and dynamic behavior of SSEs are directly captured at the nano/microscale and further elucidate the PS shuttling determining the mechanism stability of electrolyte. This work provides a straightforward monitoring of the compositional and morphological evolution, which contributes one to exploring the failure mechanisms and interfacial reactions for the cell performance enhancement.  相似文献   

17.
Lithium–sulfur batteries have attracted extensive attention because of their high energy density. However, their application is still impeded by the inherent sluggish kinetics and solubility of intermediate products (i.e., polysulfides) of the sulfur cathode. Herein, graphene‐supported Ni nanoparticles with a carbon coating are fabricated by directly carbonizing a metal–organic framework/graphene oxide composite, which is then dispersed on a commercial glass fiber membrane to form a separator with electrocatalytic activity. In situ analysis and electrochemical investigation demonstrate that this modified separator can effectively suppress the shuttle effect and regulate the catalytic conversion of intercepted polysulfides, which is also confirmed by density functional theory calculations. It is found that Ni–C sites can chemically interact with polysulfides and stabilize the radical S3?? through Ni? S bonds to enable fast dynamic equilibrium with S62?, while Ni nanoparticles reduce the oxidation barrier of Li2S and accelerate ion/electron transport. As a result, the corresponding lithium–sulfur battery shows a high cycle stability (88% capacity retention over 100 cycles) even with a high sulfur mass loading of 8 mg cm?2 and lean electrolyte (6.25 µ L mg?1). Surprisingly, benefitting from the improved kinetics, the battery can work well at ?50 °C, which is rarely achieved by conventional Li–S batteries.  相似文献   

18.
Lithium–sulfur batteries are attractive for automobile and grid applications due to their high theoretical energy density and the abundance of sulfur. Despite the significant progress in cathode development, lithium metal degradation and the polysulfide shuttle remain two critical challenges in the practical application of Li–S batteries. Development of advanced electrolytes has become a promising strategy to simultaneously suppress lithium dendrite formation and prevent polysulfide dissolution. Here, a new class of concentrated siloxane‐based electrolytes, demonstrating significantly improved performance over the widely investigated ether‐based electrolytes are reported in terms of stabilizing the sulfur cathode and Li metal anode as well as minimizing flammability. Through a combination of experimental and computational investigation, it is found that siloxane solvents can effectively regulate a hidden solvation‐ion‐exchange process in the concentrated electrolytes that results from the interactions between cations/anions (e.g., Li+, TFSI?, and S2?) and solvents. As a result, it could invoke a quasi‐solid‐solid lithiation and enable reversible Li plating/stripping and robust solid‐electrolyte interphase chemistries. The solvation‐ion‐exchange process in the concentrated electrolytes is a key factor in understanding and designing electrolytes for other high‐energy lithium metal batteries.  相似文献   

19.
A novel combination of hard carbon anode sodium pre‐loading and a tailored electrolyte is used to prepare room temperature sodium‐sulfur full cell batteries. The electrochemical loading with sodium ions is realized in a specific mixture of diethyl carbonate, ethylene carbonate, and fluoroethylene carbonate electrolyte in order to create a first solid electrolyte interface (SEI) on the anode surface. Combining such anodes with a porous carbon/sulfur composite cathode results in full cells with a significantly decreased polysulfide shuttle when compared to half cells combined with metallic sodium anodes. Further optimization involves the use of Na2S/P2S5 doped tetraethylene glycol dimethyl ether based electrolyte in the full cell for the formation of a second SEI, reducing polysulfide shuttle even further. More importantly, the electrochemical discharge processes in the cell are improved by adding this dissolved complexation agent to the electrolyte. As a result of this combination sodium‐sulfur cells with tailored cathode materials and electrolytes can achieve high discharge capacities up to 980 mAh g?1sulfur and 1000 cycles with 200 mAh g?1sulfur remaining capacity, at room temperature.  相似文献   

20.
The combination of a magnesium anode with a sulfur cathode is one of the most promising electrochemical couples because of its advantages of good safety, low cost, and a high theoretical energy density. However, magnesium sulfur batteries are still in a very early stage of research and development, and the discovery of suitable electrolytes is the key challenge for further improvement. Here, a new preparation method for non‐nucleophilic electrolyte solutions using a two‐step reaction in one‐pot is presented, which provides a feasible way to optimize the physiochemical properties of the electrolyte for the application in magnesium sulfur batteries. The first use of modified electrolytes in glymes and binary solvents of glyme and ionic liquid shows beneficial effects on the performance of magnesium sulfur batteries. New insights into the reaction mechanism of electrochemical conversion between magnesium and sulfur are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号