首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The performance of bulk heterojunction solar cells made from blends of a non‐fullerene acceptor, N,N′‐bis(2‐ethylhexyl)‐2,6‐bis(5″‐hexyl‐[2,2′;5′,2″]terthiophen‐5yl)‐1,4,5,8‐naphthalene diimide (NDI‐3TH), and poly(3‐hexylthiophene) (P3HT) donor is enhanced 10‐fold by using a processing additive in conjunction with an electron‐blocking and a hole‐blocking buffer layers. The power conversion efficiency of P3HT:NDI‐3TH solar cells improves from 0.14% to 1.5% by using a processing additive (1,8‐diiodooctane) at an optimum concentration of 0.2 vol%, which is far below the 2‐3 vol% optimum concentrations found in polymer/fullerene systems. TEM and AFM imaging show that the size and connectivity of the NDI‐3TH domains in the phase‐separated P3HT:NDI‐3TH blends vary strongly with the concentration of the processing additive. These results demonstrate, for the first time, that processing additives can be effective in the optimization of the morphology and performance of bulk heterojunction polymer solar cells based on non‐fullerene acceptors.  相似文献   

3.
4.
5.
6.
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer.  相似文献   

7.
It is shown that the performance of inverted organic solar cells can be significantly improved by facilitating the formation of a quasi‐ohmic contact via solution‐processed alkali hydroxide (AOH) interlayers on top of n‐type metal oxide (aluminum zinc oxide, AZO, and zinc oxide, ZnO) layers. AOHs significantly reduce the work function of metal oxides, and are further proven to effectively passivate defect states in these metal oxides. The interfacial energetics of these electron collecting contacts with a prototypical electron acceptor (C60) are investigated to reveal the presence of a large interface dipole and a new interface state between the Fermi energy and the C60 highest occupied molecular orbital for AOH‐modified AZO contacts. These novel interfacial gap states are a result of ground‐state electron transfer from the metal hydroxide‐functionalized AZO contact to the adsorbed molecules, which are hypothesized to be electronically hybridized with the contact. These interface states tail all the way to the Fermi energy, providing for a highly n‐doped (metal‐like) interfacial molecular layer. Furthermore, the strong “light‐soaking” effect is no longer observed in devices with a AOH interface.  相似文献   

8.
9.
Perylene diimide (PDI) with high electron affinities are promising candidates for applications in polymer solar cells (PSCs). In addition, the strength of π‐deficient backbones and end‐groups in an n‐type self‐dopable system strongly affects the formed end‐group‐induced electronic interactions. Herein, a series of amine/ammonium functionalized PDIs with excellent alcohol solubility are synthesized and employed as electron transporting layers (ETLs) in PSCs. The electron transfer properties of the resulting PDIs are dramatically tuned by different end‐groups and π‐deficient backbones. Notably, electron transfer is observed directly in solution in self‐doped PDIs for the first time. A significantly enhanced power conversion efficiency of 10.06% is achieved, when applying the PDIs as ETLs in PTB7‐Th:PC71BM‐based PSCs. These results demonstrate the potential of n‐type organic semiconductors with stable n‐type doping capability and facile solution processibility for future applications of energy transition devices.  相似文献   

10.
11.
A novel wide‐bandgap electron‐donating copolymer containing an electron‐deficient, difluorobenzotriazole building block with a siloxane‐terminated side chain is developed. The resulting polymer, poly{(4,8‐bis(4,5‐dihexylthiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐4,7‐di(thiophen‐2‐yl)‐5,6‐difluoro‐2‐(6‐(1,1,1,3,5,5,5‐heptamethyltri‐siloxan‐3‐yl)hexyl)‐2H‐benzo[d][1,2,3]triazole} (PBTA‐Si), is used to successfully fabricate high‐performance, ternary, all‐polymer solar cells (all‐PSCs) insensitive to the active layer thickness. An impressively high fill factor of ≈76% is achieved with various ternary‐blending ratios. The optimized all‐PSCs attain a power conversion efficiency (PCE) of 9.17% with an active layer thickness of 350 nm and maintain a PCE over 8% for thicknesses over 400 nm, which is the highest reported efficiency for thick all‐PSCs. These results can be attributed to efficient charge transfer, additional energy transfer, high and balanced charge transport, and weak recombination behavior in the photoactive layer. Moreover, the photoactive layers of the ternary all‐PSCs are processed in a nonhalogenated solvent, 2‐methyltetrahydrofuran, which greatly improves their compatibility with large‐scale manufacturing.  相似文献   

12.
Efficient vacuum‐deposited tandem organic photovoltaic cells (TOPVs) composed of pristine fullerenes as the acceptors and two complementary absorbing donors, 2‐((2‐(5‐(4‐(diphenylamino)phenyl)thieno[3,2‐b]thiophen‐2‐yl)thiazol‐5‐yl)methylene)malononitrile for the visible absorption and 2‐((7‐(5‐(dip‐tolylamino)thiophen‐2‐yl)benzo[c]‐[1,2,5]thiadiazol‐4‐yl)methylene)malononitrile for the near‐infrared absorption, are reported. Two subcells are connected by the interconnection unit (ICU) composed of electron‐transporting layer/metal/p‐doped hole‐transporting layer. The p‐doped layer in the ICU enables increasing the short‐circuit current density (J SC) of TOPVs by tuning the relative position of subcells in the tandem devices to have the maximum optical field distribution response, which is well matched with theoretical calculation. Moreover, the introduction of the doped layer benefits to the higher fill factor (FF) of the consisting subcells without losing open‐circuit voltage (V OC) even with the thick active layers. As a result, power conversion efficiency of 9.2% is achieved with higher FF of 0.62 than that of single‐junction subcells (0.54, 0.57), J SC of 8.7 mA cm?2, and V OC of 1.71 V using 80 nm thick active layers in both subcells.  相似文献   

13.
14.
In addition to a good perovskite light absorbing layer, the hole and electron transport layers play a crucial role in achieving high‐efficiency perovskite solar cells. Here, a simple, one‐step, solution‐based method is introduced for fabricating high quality indium‐doped titanium oxide electron transport layers. It is shown that indium‐doping improves both the conductivity of the transport layer and the band alignment at the ETL/perovskite interface compared to pure TiO2, boosting the fill‐factor and voltage of perovskite cells. Using the optimized transport layers, a high steady‐state efficiency of 17.9% for CH3NH3PbI3‐based cells and 19.3% for Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3‐based cells is demonstrated, corresponding to absolute efficiency gains of 4.4% and 1.2% respectively compared to TiO2‐based control cells. In addition, a steady‐state efficiency of 16.6% for a semi‐transparent cell is reported and it is used to achieve a four‐terminal perovskite‐silicon tandem cell with a steady‐state efficiency of 24.5%.  相似文献   

15.
16.
Optimizing the interfacial contacts between the photoactive layer and the electrodes is an important factor in determining the performance of organic solar cells (OSCs). A charge‐selective layer with tailored electrical properties enhances the charge collection efficiency and interfacial stability. Here, the potential of hydrogenated TiO2 nanoparticles (H‐TiO2 NPs) as an efficient electron‐selective layer (ESL) material in OSCs is reported for the first time. The H‐TiO2 is synthesized by discharge plasma in liquid at atmospheric pressure, which has the benefits of a simple one‐pot synthesis process, rapid and mild reaction conditions, and the capacity for mass production. The H‐TiO2 exhibits high conductivity and favorable energy level formation for efficient electron extraction, providing a basis for an efficient bilayer ESL system composed of conjugated polyelectrolyte/H‐TiO2. Thus, the enhanced charge transport and extraction efficiency with reduced recombination losses at the cathode interfacial contacts is achieved. Moreover, the OSCs composed of H‐TiO2 are almost free of light soaking, which has been reported to severely limit the performance and stability of OSCs based on conventional TiO2 ESLs. Therefore, H‐TiO2 as a new efficient, stable, and cost‐effective ESL material has the potential to open new opportunities for optoelectronic devices.  相似文献   

17.
18.
An amino‐functionalized copolymer with a conjugated backbone composed of fluorene, naphthalene diimide, and thiophene spacers (PFN‐2TNDI) is introduced as an alternative electron transport layer (ETL) to replace the commonly used [6,6]‐Phenyl‐C61‐butyric acid methyl ester (PCBM) in the p–i–n planar‐heterojunction organometal trihalide perovskite solar cells. A combination of characterizations including photoluminescence (PL), time‐resolved PL decay, Kelvin probe measurement, and impedance spectroscopy is used to study the interfacial effects induced by the new ETL. It is found that the amines on the polymer side chains not only can passivate the surface traps of perovskite to improve the electron extraction properties, they also can reduce the work function of the metal cathode by forming desired interfacial dipoles. With these dual functionalities, the resulted solar cells outperform those based on PCBM with power conversion efficiency (PCE) increased from 12.9% to 16.7% based on PFN‐2TNDI. In addition to the performance enhancement, it is also found that a wide range of thicknesses of the new ETL can be applied to produce high PCE devices owing to the good electron transport property of the polymer, which offers a better processing window for potential fabrication of perovskite solar cells using large‐area coating method.  相似文献   

19.
20.
Despite recent breakthroughs in power conversion efficiencies (PCEs), which have resulted in PCEs exceeding 22%, perovskite solar cells (PSCs) still face serious drawbacks in terms of their printability, reliability, and stability. The most efficient PSC architecture, which is based on titanium dioxide as an electron transport layer, requires an extremely high‐temperature sintering process (≈500 °C), reveals hysterical discrepancies in the device measurement, and suffers from performance degradation under light illumination. These drawbacks hamper the practical development of PSCs fabricated via a printing process on flexible plastic substrates. Herein, an innovative method to fabricate low‐temperature‐processed, hysteresis‐free, and stable PSCs with a large area up to 1 cm2 is demonstrated using a versatile organic nanocomposite that combines an electron acceptor and a surface modifier. This nanocomposite forms an ideal, self‐organized electron transport layer (ETL) via a spontaneous vertical phase separation, which leads to hysteresis‐free, planar heterojunction PSCs with stabilized PCEs of over 18%. In addition, the organic nanocomposite concept is successfully applied to the printing process, resulting in a PCE of over 17% in PSCs with printed ETLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号