首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous batteries are an emerging candidate for low‐cost and environmentally friendly grid storage systems. Designing such batteries from inexpensive, abundant, recyclable, and nontoxic organic active materials provides a logical step toward improving both the environmental and economic impact of these systems. Herein the first ever battery material that works with simultaneous uptake and release of both cations and anions is proposed by coupling p‐type (bipyridinium) and n‐type (naphthalene diimide) redox moieties. It represents one of a new family of electrode materials which demonstrates an optimal oxidation potential (?0.47 V vs saturated calomel electrode), extremely fast kinetics, a highly competitive capacity (63 mA h g?1 at 4C), and cyclability in both neutral Na+ and Mg2+ electrolytes of molar range concentration. Through a combination of UV–vis spectroelectrochemistry, electrochemical quartz‐crystal microbalance, Operando synchrotron‐X‐ray diffraction, and density functional theory calculations a novel dual cation/anion insertion mechanism was proven and rationalized. Based on these findings, this innovative p/n‐type product may well provide a viable option for use as a negative electrode material, thereby promoting the design of cutting‐edge, low‐cost, rocking‐chair dual‐ion aqueous batteries.  相似文献   

2.
Aligned protein α‐helix dipoles have been implicated in protein function and structure. The recent breakthroughs in high‐resolution electron microscopy (EM) of macromolecules makes it possible to explore fundamental aspects of structural biology at the detailed molecular level. The electrostatic potential (ESP) generated by aligned protein α‐helix dipole should be observable in high‐resolution EM maps despite the fact that the effect may be partially screened by induced electric fields. Here, we show that aligned backbone dipoles in protein α‐helices account for long‐range features in the protein ESP functions. Our results are consistent with experimental EM maps and density functional theory calculations, including direct Fourier summation for proper calculation of the ESP due to the nonlocal nature of the ESP function from aligned dipoles and other partial atomic charges.  相似文献   

3.
Charge events across organic–metal oxide heterointerfaces routinely occur in organic electronics, yet strongly influence their overall performance and stability. They become even more complicated and challenging for the heterojunction conditions in polymer solar cells (PSCs), especially when nonfullerene acceptors with varied energetics are employed. In this work, an effective interfacial strategy that utilizes novel small molecule self‐assembled monolayers (SAMs) is developed to improve the electronic and electric, as well as chemical properties of organic–zinc oxide (ZnO) interfaces for nonfullerene PSCs. It is revealed that the tailored SAMs with well‐controlled energy levels and molecular dipoles can effectively optimize the energetic barrier and work function (WF) of heterointerface for optimal electron extraction. In addition, the introduction of SAMs atop of ZnO facilitates not only acceptor segregation near the n‐contact interface, but also passivation of the photocatalytic activities for ZnO, to improve overall performance and photo stability of the derived nonfullerene PSCs. Overall, the methodology and structure–property relationship revealed herein would be beneficial for a wide range of hybrid electronics.  相似文献   

4.
The anionic redox activity in lithium‐rich layered oxides has the potential to boost the energy density of lithium‐ion batteries. Although it is widely accepted that the anionic redox activity stems from the orphaned oxygen energy level, its regulation and structural stabilization, which are essential for practical employment, remain still elusive, requiring an improved fundamental understanding. Herein, the oxygen redox activity for a wide range of 3d transition‐metal‐based Li2TMO3 compounds is investigated and the intrinsic competition between the cationic and anionic redox reaction is unveiled. It is demonstrated that the energy level of the orphaned oxygen state (and, correspondingly, the activity) is delicately governed by the type and number of neighboring transition metals owing to the π‐type interactions between Li? O? Li and M t2g states. Based on these findings, a simple model that can be used to estimate the anionic redox activity of various lithium‐rich layered oxides is proposed. The model explains the recently reported significantly different oxygen redox voltages or inactivity in lithium‐rich materials despite the commonly observed Li? O? Li states with presumably unhybridized character. The discovery of hidden factors that rule the anionic redox in lithium‐rich cathode materials will aid in enabling controlled cumulative cationic and anionic redox reactions.  相似文献   

5.
The 6‐amino‐6‐deoxychitosan (NC) and their 2, 6‐di‐N‐sulfonated derivatives were prepared via N‐phthaloylation, tosylation, azidation, hydrazinolysis, reduction of azide groups and N‐sulfonation, and their structures were systematically characterized by FT‐IR, 2D HSQC NMR, XRD, gel permeation chromatography (GPC), and elemental analysis. The 6‐amino‐6‐deoxychitosan showed effect in three selected antioxidant essays, including reducing power, superoxide anion radical scavenging ability, and hydroxyl radical scavenging effect. But the factors affecting each activity were different. The reducing power and the superoxide anion radical scavenging ability of NC were strong and closely related to the amino groups in the molecular chains. Both introducing N‐sulfonated groups into NC and the concentration reduction of NC and its sulfonated derivatives decreased these activities. For the superoxide anion radical, the molecular charge property was also a significant influence factor. For the hydroxyl radical, NC only showed weak scavenging activity in a special inverse concentration‐dependent manner. However, the incorporation of N‐sulfonated groups significantly improved the scavenging activity, and the more N‐sulfonated groups, the higher the concentrations, the stronger the activity was. The results could be due to the different conformations of NC and its sulfonated derivatives in aqueous solution. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 539–549, 2015.  相似文献   

6.
An amino‐functionalized copolymer with a conjugated backbone composed of fluorene, naphthalene diimide, and thiophene spacers (PFN‐2TNDI) is introduced as an alternative electron transport layer (ETL) to replace the commonly used [6,6]‐Phenyl‐C61‐butyric acid methyl ester (PCBM) in the p–i–n planar‐heterojunction organometal trihalide perovskite solar cells. A combination of characterizations including photoluminescence (PL), time‐resolved PL decay, Kelvin probe measurement, and impedance spectroscopy is used to study the interfacial effects induced by the new ETL. It is found that the amines on the polymer side chains not only can passivate the surface traps of perovskite to improve the electron extraction properties, they also can reduce the work function of the metal cathode by forming desired interfacial dipoles. With these dual functionalities, the resulted solar cells outperform those based on PCBM with power conversion efficiency (PCE) increased from 12.9% to 16.7% based on PFN‐2TNDI. In addition to the performance enhancement, it is also found that a wide range of thicknesses of the new ETL can be applied to produce high PCE devices owing to the good electron transport property of the polymer, which offers a better processing window for potential fabrication of perovskite solar cells using large‐area coating method.  相似文献   

7.
Based on cation/anion graphite intercalation chemistry (GIC) processes, dual‐graphite batteries promise to be an energy storage device of high safety and low cost. However, few single electrolyte systems can simultaneously meet the requirements of both high oxidative stability during high voltage anion‐GIC on cathode and high reversibility upon cation‐GIC on anode. Thus, in order to rigidly remedy the irreversible capacity loss, excessive electrode materials need to be fabricated within full cell, resulting in an imbalance toward capacity‐dependent mass loading proportion between both electrodes. This work introduces a hybrid (dual‐organic) electrolytes design strategy into this promising technology. Segregated by a Nafion‐based separator, an ionic liquid electrolyte within the cathodic side can endure high operation potentials, while high Li‐GIC reversibility can be achieved in a superconcentrated ether‐based electrolyte on the anode side. On a mechanistic level, various cation‐GIC processes conducted in different electrolyte systems are clearly revealed and are summarized based on systematical characterizations. More importantly, after synergistically tuning the advantage and drawback of each electrolyte in this hybrid system, the dual‐graphite full cell assembled with capacity‐equivalent graphite‐based electrodes (1:1 mass loading) demonstrates superior long‐term cycling stability with ultrahigh capacity retention for over 3000 cycles.  相似文献   

8.
Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium‐based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol‐β‐guaiacyl ether (VG) with 1‐allyl‐3‐methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π‐π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl anion forms a hydrogen‐bonded complex with VG, the imidazolium cation interacts with VG via both the π‐π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium‐based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution.  相似文献   

9.
Multijunction solar cells are designed to improve the overlap with the solar spectrum and to minimize losses due to thermalization. Aside from the optimum choice of photoactive materials for the respective sub‐cells, a proper interconnect is essential. This study demonstrates a novel all‐oxide interconnect based on the interface of the high‐work‐function (WF) metal oxide MoOx and low‐WF tin oxide (SnOx). In contrast to typical p‐/n‐type tunnel junctions, both the oxides are n‐type semiconductors with a WF of 5.2 and 4.2 eV, respectively. It is demonstrated that the electronic line‐up at the interface of MoOx and SnOx comprises a large intrinsic interface dipole (≈0.8 eV), which is key to afford ideal alignment of the conduction band of MoOx and SnOx, without the requirement of an additional metal or organic dipole layer. The presented MoOx/SnOx interconnect allows for the ideal (loss‐free) addition of the open circuit voltages of the two sub‐cells.  相似文献   

10.
Temocapril is a prodrug whose hydrolysis by carboxylesterase 1 (CES1) yields the active ACE inhibitor temocaprilat. This molecular‐dynamics (MD) study uses a resolved structure of the human CES1 (hCES1) to investigate some mechanistic details of temocapril hydrolysis. The ionization constants of temocapril (pK1 and pK3) and temocaprilat (pK1, pK2, and pK3) were determined experimentally and computationally using commercial algorithms. The constants so obtained were in good agreement and revealed that temocapril exists mainly in three ionic forms (a cation, a zwitterion, and an anion), whereas temocaprilat exists in four major ionic forms (a cation, a zwitterion, an anion, and a dianion). All these ionic forms were used as ligands in 5‐ns MS simulations. While the cationic and zwitterionic forms of temocapril were involved in an ion‐pair bond with Glu255 suggestive of an inhibitor behavior, the anionic form remained in a productive interaction with the catalytic center. As for temocaprilat, its cation appeared trapped by Glu255, while its zwitterion and anion made a slow departure from the catalytic site and a partial egress from the protein. Only its dianion was effectively removed from the catalytic site and attracted to the protein surface by Lys residues. A detailed mechanism of product egress emerges from the simulations.  相似文献   

11.
The MHC class I allochimeric protein containing donor‐type epitopes on recipient‐type heavy chains induces indefinite survival of heterotopic cardiac allografts in rats. We analyzed gene expression profile of heart allograft tissue. Mutated peptide [α1h1/u]‐RT1.Aa that contains donor‐type (Wistar Furth, WF; RT1u) immunogenic epitopes displayed on recipient‐type (ACI, RT1a) was delivered into ACI recipients of WF hearts at the time of transplantation in addition to a 3 days course of oral cyclosporine. Microarray analysis was performed using Affymetrix Rat 230 2.0 Microarray. Allochimeric molecule treatment caused upregulation of genes involved in structural integrity of heart muscle, downregulation of IL‐1β a key modulator of the immune response, and downregulation of partitioning defective six homolog gamma PAR6, which is involved in T cell polarity, motility, and ability to scan dendritic cells (DC). These indicate that the immunosuppressive function of allochimeric molecule and/or the establishment of allograft tolerance depend on the induction of genes responsible for the heart tissue integrity, the suppression of cytokine pathway(s), and possibly the impairment of T cells mobility and their DC scanning ability. These novel findings may have important clinical implications for inhibition of chronic rejection in transplant recipients. genesis 48:8–19, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Low‐temperature solution‐processed high‐efficiency colloidal quantum dot (CQD) photovoltaic devices are developed by improving the interfacial properties of p–n heterojunctions. A unique conjugated polyelectrolyte, WPF‐6‐oxy‐F, is used as an interface modification layer for ZnO/PbS‐CQD heterojunctions. With the insertion of this interlayer, the device performance is dramatically improved. The origins of this improvement are determined and it is found that the multifunctionality of the WPF‐6‐oxy‐F interlayer offers the following essential benefits for the improved CQD/ZnO junctions: (i) the dipole induced by the ionic substituents enhances the quasi‐Fermi level separation at the heterojunction through favorable energy band‐bending, (ii) the ethylene oxide groups containing side chains can effectively passivate the interfacial defect sites of the heterojunction, and (iii) these effects occur without deterioration in the intrinsic depletion region or the series resistance of the device. All of the figures‐of‐merit of the devices are improved as a result of the enhanced built‐in potential (electric field) and the reduced interfacial charge recombination at the heterojunction. The benefits due to the WPF‐6‐oxy‐F interlayer are generally applicable to various types of PbS/ZnO heterojunctions. Finally, CQD photovoltaic devices with a power conversion efficiency of 9% are achievable, even by a solution process at room temperature in an air atmosphere. The work suggests a useful strategy to improve the interfacial properties of p–n heterojunctions by using polymeric interlayers.  相似文献   

13.
The ubiquitin‐conjugation system regulates a vast range of biological phenomena by affecting protein function mostly through polyubiquitin conjugation. The type of polyubiquitin chain that is generated seems to determine how conjugated proteins are regulated, as they are recognized specifically by proteins that contain chain‐specific ubiquitin‐binding motifs. An enzyme complex that catalyses the formation of newly described linear polyubiquitin chains—known as linear ubiquitin chain‐assembly complex (LUBAC)—has recently been characterized, as has a particular ubiquitin‐binding domain that specifically recognizes linear chains. Both have been shown to have crucial roles in the canonical nuclear factor‐κB (NF‐κB)‐activation pathway. The ubiquitin system is intimately involved in regulating the NF‐κB pathway, and the regulatory roles of K63‐linked chains have been studied extensively. However, the role of linear chains in this process is only now emerging. This article discusses the possible mechanisms underlying linear polyubiquitin‐mediated activation of NF‐κB, and the different roles that K63‐linked and linear chains have in NF‐κB activation. Future directions for linear polyubiquitin research are also discussed.  相似文献   

14.
Beta-carotene has been identified as an intermediate in a secondary electron transfer pathway that oxidizes Chl(Z) and cytochrome b(559) in Photosystem II (PS II) when normal tyrosine oxidation is blocked. To test the redox function of carotenoids in this pathway, we replaced the zeta-carotene desaturase gene (zds) or both the zds and phytoene desaturase (pds) genes of Synechocystis sp. PCC 6803 with the phytoene desaturase gene (crtI) of Rhodobacter capsulatus, producing carotenoids with shorter conjugated pi-electron systems and higher reduction potentials than beta-carotene. The PS II core complexes of both mutant strains contain approximately the same number of chlorophylls and carotenoids as the wild type but have replaced beta-carotene (11 double bonds), with neurosporene (9 conjugated double bonds) and beta-zeacarotene (9 conjugated double bonds and 1 beta-ionylidene ring). The presence of the ring appears necessary for PS II assembly. Visible and near-infrared spectroscopy were used to examine the light-induced formation of chlorophyll and carotenoid radical cations in the mutant PS II core complexes at temperatures from 20 to 160 K. At 20 K, a carotenoid cation radical is formed having an absorption maximum at 898 nm, an 85 nm blue shift relative to the beta-carotene radical cation peak in the WT, and consistent with the formation of the cation radical of a carotenoid with 9 conjugated double bonds. The ratio of Chl(+)/Car(+) is higher in the mutant core complexes, consistent with the higher reduction potential for Car(+). As the temperature increases, other carotenoids become accessible to oxidation by P(680)(+).  相似文献   

15.
A new 2D‐conjugated medium bandgap donor–acceptor copolymer, J81 , based on benzodifuran with trialkylsilyl thiophene side chains as donor unit and fluorobenzothiazole as acceptor, is synthesized and successfully used in nonfullerene polymer solar cells (PSCs) with low bandgap n‐type organic semiconductor (n‐OS) 3,9‐bis(2‐methylene‐ (3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(4‐ hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐ dithiophene (ITIC) and m ‐ITIC as acceptor. J81 possesses a lower‐lying highest occupied molecular orbital (HOMO) energy level of ?5.43 eV and medium bandgap of 1.93 eV with complementary absorption in the visible–near infrared region with the n‐OS acceptor. The PSCs based on J81 :ITIC and J81 :m ‐ITIC yield high power conversion efficiency of 10.60% and 11.05%, respectively, with high V oc of 0.95–0.96 V benefit from the lower‐lying HOMO energy level of J81 donor. The work indicates that J81 is another promising polymer donor for the nonfullerene PSCs.  相似文献   

16.
Li‐excess 3d‐transition metal layered oxides are promising candidates in high‐energy‐density cathode materials for improving the mileage of electric vehicles. However, their low rate capability has hindered their practical application. The lack of understanding about the redox reactions and migration behavior at high C‐rates make it difficult to design Li‐excess materials with high rate capability. In this study, the characteristics of the atomic behavior that is predominant at fast charge/discharge are investigated by comparing cation‐ordered and cation‐disordered materials using X‐ray absorption spectroscopy (XAS). The difference in the atomic arrangement determines the dominance of the transition metal/oxygen redox reaction and the variations in transition metal–oxygen hybridization. In‐depth electrochemical analysis is combined with operando XAS analysis to reveal electronically and structurally preferred atomic behavior when a redox reaction occurs between oxygen and each transition metal under fast charge/discharge conditions. This provides a fundamental insight into the improvement of rate capability. Furthermore, this work provides guidance for identifying high‐energy‐density materials with complex structural properties.  相似文献   

17.
Stomatal pores formed by a pair of guard cells in the leaf epidermis control gas exchange and transpirational water loss. Stomatal closure is mediated by the release of potassium and anions from guard cells. Anion efflux from guard cells involves slow (S‐type) and rapid (R‐type) anion channels. Recently the SLAC1 gene has been shown to encode the slow, voltage‐independent anion channel component in guard cells. In contrast, the R‐type channel still awaits identification. Here, we show that AtALMT12, a member of the aluminum activated malate transporter family in Arabidopsis, represents a guard cell R‐type anion channel. AtALMT12 is highly expressed in guard cells and is targeted to the plasma membrane. Plants lacking AtALMT12 are impaired in dark‐ and CO2‐induced stomatal closure, as well as in response to the drought‐stress hormone abscisic acid. Patch‐clamp studies on guard cell protoplasts isolated from atalmt12 mutants revealed reduced R‐type currents compared with wild‐type plants when malate is present in the bath media. Following expression of AtALMT12 in Xenopus oocytes, voltage‐dependent anion currents reminiscent to R‐type channels could be activated. In line with the features of the R‐type channel, the activity of heterologously expressed AtALMT12 depends on extracellular malate. Thereby this key metabolite and osmolite of guard cells shifts the threshold for voltage activation of AtALMT12 towards more hyperpolarized potentials. R‐Type channels, like voltage‐dependent cation channels in nerve cells, are capable of transiently depolarizing guard cells, and thus could trigger membrane potential oscillations, action potentials and initiate long‐term anion and K+ efflux via SLAC1 and GORK, respectively.  相似文献   

18.
Laser flash photolysis at 355 nm of misonidazole or metronidazole in aqueous solutions produced the relatively long-lived nitro radical anion as the only observable transient species. When 266 nm excitation was used, a small yield of solvated electron was observed. It is suggested that the nitroimidazole first undergoes photoionization and the photoelectrons are scavenged by ground state nitroimidazole molecules to produce the nitro radical anion. Alternatively, added EDTA or carbonate ion acted as an electron donor to the excited state nitroimidazole molecule, thereby increasing the yield of nitro radical anion. The transient yield from metronidazole was about half that from misonidazole, while the phosphorescence intensity of metronidazole in an ethanol glass was about 20 times that of misonidazole. The misonidazole n, pi* triplet state is more easily reduced than that of metronidazole and, in the presence of an electron donor, the radical anion is postulated to result from electron transfer to the triplet state of the nitroimidazole.  相似文献   

19.
Three vacuum‐deposited donor–acceptor–acceptor (d–a–a') small molecule donors are studied with different side chains attached to an asymmetric heterotetracene donor block for use in high efficiency organic photovoltaics (OPVs). The donor with an isobutyl side chain yields the highest crystal packing density compared to molecules with 2‐ethylhexyl or n‐butyl chains, leading to the largest absorption coefficient and short circuit current in an OPV. It also exhibits a higher fill factor, consistent with its preferred out‐of‐plane molecular π–π stacking arrangement that facilitates charge transport in the direction perpendicular to the substrate. A power conversion efficiency of 9.3 ± 0.5% is achieved under 1 sun intensity, AM 1.5 G simulated solar illumination, which is significantly higher than 7.5 ± 0.4% of the other two molecules. These results indicate that side chain modification of d–a–a' small molecules offers an effective approach to control the crystal packing configuration, thereby improving the device performance.  相似文献   

20.
The (S,S,S,S) and (R,R,R,R) enantiomers of tetramethyl‐bis(ethylenedithio)‐tetrathiafulvalene (TM‐BEDT‐TTF) show equatorial conformation for the four methyl groups in the solid state, according to the single‐crystal X‐ray analyses. Theoretical calculations at the Density Functional Theory (DFT) and time‐dependent (TD) DFT levels indicate higher gas phase stability for the axial conformer than the equatorial one by 1.25 kcal · mole‐1 and allow the assignment of the UV–vis and circular dichroism transitions. A complete series of radical cation salts of 1:1 stoichiometry with the triiodide anion I3 was obtained by electrocrystallization of both enantiopure and racemic forms of the donor. In the packing the donors are organized in dimers that further interact through S · · · S intermolecular contacts and the triiodide anions lie parallel to pairs of oxidized donors. The conductivity of the racemate, which adopts the same, but disordered, structural type, is considerably lower, with much higher activation energy. Chirality 25:466–474, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号