首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anionic redox activity in lithium‐rich layered oxides has the potential to boost the energy density of lithium‐ion batteries. Although it is widely accepted that the anionic redox activity stems from the orphaned oxygen energy level, its regulation and structural stabilization, which are essential for practical employment, remain still elusive, requiring an improved fundamental understanding. Herein, the oxygen redox activity for a wide range of 3d transition‐metal‐based Li2TMO3 compounds is investigated and the intrinsic competition between the cationic and anionic redox reaction is unveiled. It is demonstrated that the energy level of the orphaned oxygen state (and, correspondingly, the activity) is delicately governed by the type and number of neighboring transition metals owing to the π‐type interactions between Li? O? Li and M t2g states. Based on these findings, a simple model that can be used to estimate the anionic redox activity of various lithium‐rich layered oxides is proposed. The model explains the recently reported significantly different oxygen redox voltages or inactivity in lithium‐rich materials despite the commonly observed Li? O? Li states with presumably unhybridized character. The discovery of hidden factors that rule the anionic redox in lithium‐rich cathode materials will aid in enabling controlled cumulative cationic and anionic redox reactions.  相似文献   

2.
The altering of electronic states of metal oxides offers a promising opportunity to realize high‐efficiency surface catalysis, which play a key role in regulating polysulfides (PS) redox in lithium–sulfur (Li–S) batteries. However, little effort has been devoted to understanding the relationship between the electronic state of metal oxides and a catalyst's properties in Li–S cells. Herein, defect‐rich heterojunction electrocatalysts composed of ultrathin TiO2‐x nanosheets and carbon nanotubes (CNTs) for Li–S batteries are reported. Theoretical simulations indicate that oxygen vacancies and heterojunction can enhance electronic conductivity and chemical adsorption. Spectroscopy and electrochemical techniques further indicate that the rich surface vacancies in TiO2‐x nanosheets result in highly activated trapping sites for LiPS and lower energy barriers for fast Li ion mobility. Meanwhile, the redistribution of electrons at the heterojunction interfaces realizes accelerated surface electron exchange. Coupled with a polyacrylate terpolymer (LA132) binder, the CNT@TiO2‐x–S electrodes exhibit a long cycle life of more than 300 cycles at 1 C and a high area capacity of 5.4 mAh cm?2. This work offers a new perspective on understanding catalyst design in energy storage devices through band engineering.  相似文献   

3.
Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na2Mn3O7 that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn?O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.  相似文献   

4.
Morphological engineering of nanosized transitional metal oxides shows great promise for performance improvement, yet limited efforts have been attempted to engineer the atomic structure. Oxygen vacancy (VO) can boost charge transfer leading to enhanced performance; yet excessive VO may impair the conductivity. Herein, tungsten oxide is atomically tailored by incorporating nitrogen heteroatoms into the oxygen vacancies. The efficient nitrogen‐filling into the oxygen vacancies is evidenced by the electron paramagnetic resonance spectroscopy and X‐ray absorption spectroscopy. The coordinated N atoms play a crucial role in facilitating the charge transfer and maintaining efficient lithium‐ion diffusion. Consequently, the tungsten oxide with N‐filled oxygen vacancies exhibits superior lithium‐ion storage performance.  相似文献   

5.
Improving the electrocatalytic oxygen reduction reaction (ORR) activity of transition metal oxides is important for the development of non‐noble metal catalysts that are used in metal‐air batteries and fuel cells. Here, a novel facile strategy of hydrogenation to significantly enhance the ORR performance of MnO2. The hydrogenated MnO2 (H‐MnO2), which is prepared through a simple heat treatment in hydrogen gas, shows characteristics of modified lattice/surface structures and increased electrical conductivity. In 0.1 M KOH aqueous solution, the prepared H‐MnO2 exhibits high activity toward the oxygen electrocatalysis with more positive onset potential (≈60 mV), ≈14% larger of limiting current, lower yield of peroxide species, and better durability than the pristine oxide. Further conductivity testing and density functional theory (DFT) studies reveal the faster kinetics of ORR after hydrogenation is due to the formation of hydrogen bonds and altered microstructure and improved electronic properties. These results highlight the importance of hydrogenation as a facile yet effective strategy to improve the catalytic activity of transition metal oxides for ORR‐based applications.  相似文献   

6.
Cathode materials with high energy density, long cycle life, and low cost are of top priority for energy storage systems. The Li‐rich transition metal (TM) oxides achieve high specific capacities by redox reactions of both the TM and oxygen ions. However, the poor reversible redox reaction of the anions results in severe fading of the cycling performance. Herein, the vacancy‐containing Na4/7[Mn6/7(?Mn)1/7]O2 (?Mn for vacancies in the Mn? O slab) is presented as a novel cathode material for Na‐ion batteries. The presence of native vacancies endows this material with attractive properties including high structural flexibility and stability upon Na‐ion extraction and insertion and high reversibility of oxygen redox reaction. Synchrotron X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies demonstrate that the charge compensation is dominated by the oxygen redox reaction and Mn3+/Mn4+ redox reaction separately. In situ synchrotron X‐ray diffraction exhibits its zero‐strain feature during the cycling. Density functional theory calculations further deepen the understanding of the charge compensation by oxygen and manganese redox reactions and the immobility of the Mn ions in the material. These findings provide new ideas on searching for and designing materials with high capacity and high structural stability for novel energy storage systems.  相似文献   

7.
《Inorganica chimica acta》1988,146(2):243-247
Addition of alkali metals to the oxides of transition elements endowed the oxides with the ability for converting methane into C2 compounds (C2H6 + C2H4). Among the combinations of alkali metals and transition metal oxides tested, the lithium added nickel oxide was the most active catalyst for the reaction. X-ray diffraction (XRD) analysis showed that the catalyst was a solid solution of lithium in NiO. The reaction of methane with the lattice oxygen atoms of the stoichiometric solid solution, LiNiO2, produced C2 compounds very selectively. The XRD analysis of the sample showed that the reaction proceeded as 2LiNiO2 + 2CH4 → Li2O + 2NiO + C2H6 + H2O. Oxidation of the reduced catalyst by oxygen regenerated LiNiO2 as Li2O + 2NiO + 1/2O2 → 2LiNiO2. Thus, it is concluded that the oxidative coupling of methane proceeds via the redox mechanism of LiNiO2. The stability of the solid solution of alkali metals with transition metal oxides under steady state reaction conditions is essential for the alkali-doped oxides to be effective in the oxidative coupling of methane.  相似文献   

8.
Efficient CO2 utilization is key to limit global climate change. Carbon monoxide, which is a crucial feedstock for chemical synthesis, can be produced by splitting CO2. However, existing thermochemical routes are energy intensive requiring high operating temperatures. A hybrid redox process (HRP) involving CO2‐to‐CO conversion using a lattice oxygen‐deprived redox catalyst at relatively low temperatures (<700 °C) is reported. The lattice oxygen of the redox catalyst, restored during CO2‐splitting, is subsequently used to convert methane to syngas. Operated at temperatures significantly lower than a number of industrial waste heat sources, this cyclic redox process allows for efficient waste heat‐utilization to convert CO2. To enable the low temperature operation, lanthanum modified ceria (1:1 Ce:La) promoted by rhodium (0.5 wt%) is reported as an effective redox catalyst. Near‐complete CO2 conversion with a syngas yield of up to 83% at low temperatures is achieved using Rh‐promoted LaCeO4?x. While La improves low‐temperature bulk redox properties of ceria, Rh considerably enhances the surface catalytic properties for methane activation. Density functional theory calculations further illustrate the underlying functions of La‐substitution. The highly effective redox catalyst and HRP scheme provide a potentially attractive route for chemical production using CO2, industrial waste heat, and methane, with appreciably lowered CO2 emissions.  相似文献   

9.
Triggering oxygen‐related activity is demonstrated as a promising strategy to effectively boost energy density of layered cathodes for sodium‐ion batteries. However, irreversible lattice oxygen loss will induce detrimental structure distortion, resulting in voltage decay and cycle degradation. Herein, a layered structure P2‐type Na0.66Li0.22Ru0.78O2 cathode is designed, delivering reversible oxygen‐related and Ru‐based redox chemistry simultaneously. Benefiting from the combination of strong Ru 4d‐O 2p covalency and stable Li location within the transition metal layer, reversible anionic/cationic redox chemistry is achieved successfully, which is proved by systematic bulk/surface analysis by in/ex situ spectroscopy (operando Raman and hard X‐ray absorption spectroscopy, etc.). Moreover, the robust structure and reversible phase transition evolution revealed by operando X‐ray diffraction further establish a high degree reversible (de)intercalation processes (≈150 mAh g?1, reversible capacity) and long‐term cycling (average capacity drop of 0.018%, 500 cycles).  相似文献   

10.
With demand for energy increasing worldwide and an ever‐stronger case building for anthropogenic climate change, the need for carbon‐neutral fuels is becoming an imperative. Extensive transportation infrastructure based on liquid hydrocarbon fuels motivates development of processes using solar energy to convert CO2 and H2O to fuel precursors such as synthesis gas. Here, perspectives concerning the use of solar‐driven thermochemical cycles using metal oxides to produce fuel precursors are given and, in particular, the important relationship between reactor design and material selection is discussed. Considering both a detailed thermodynamic analysis and factors such as reaction kinetics, volatility, and phase stability, an integrated analytical approach that facilitates material design is presented. These concepts are illustrated using three oxide materials currently receiving considerable attention: metal‐substituted ferrites, ceria, and doped cerias. Although none of these materials is “ideal,” the tradeoffs made in selecting any one of them are clearly indicated, providing a starting point for assessing the feasibility of alternative materials developed in the future.  相似文献   

11.
Fast oxide ion conduction is a highly desirable property for materials in a wide range of applications. The fastest reported ionic conductor, representing the current state of the art and an oft‐proposed effective limit of oxide ion conductivity, is the high temperature fluorite‐structured δ phase of Bi2O3. Here, the ionic nature of this conduction is, for the first time, directly determined through oxygen tracer diffusion measurements. This phase also presents a remarkably high oxygen surface exchange coefficient, competitive with the highest performance solid oxide fuel cell (SOFC) cathodes yet counterintuitively in a material with negligible electronic conduction. The low temperature α‐Bi2O3 polymorph is also investigated, revealing a remarkable drop in diffusivity of over 7 orders of magnitude with a temperature drop of just ≈150 °C. Surprisingly, the diffusion studies also reveal a secondary, significantly faster migration pathway in the α phase. This is attributed to grain boundary conduction and shown to be 3–4 orders of magnitude higher than in the bulk. This previously unobserved property could present an exciting opportunity to tailor ionic conductivity levels through manipulating microstructure down to the nanoscale.  相似文献   

12.
Developing low‐cost and efficient electrocatalysts for the oxygen evolution reaction and oxygen reduction reaction is of critical significance to the practical application of some emerging energy storage and conversion devices (e.g., metal–air batteries, water electrolyzers, and fuel cells). Lithium cobalt oxide is a promising nonprecious metal‐based electrocatalyst for oxygen electrocatalysis; its activity, however, is still far from the requirements of practical applications. Here, a new LiCoO2‐based electrocatalyst with nanosheet morphology is developed by a combination of Mg doping and shear force‐assisted exfoliation strategies toward enhanced oxygen reduction and evolution reaction kinetics. It is demonstrated that the coupling effect of Mg doping and the exfoliation can effectively modulate the electronic structure of LiCoO2, in which Co3+ can be partially oxidized to Co4+ and the Co–O covalency can be enhanced, which is closely associated with the improvement of intrinsic activity. Meanwhile, the unique nanosheet morphology also helps to expose more active Co species. This work offers new insights into deploying the electronic structure engineering strategy for the development of efficient and durable catalysts for energy applications.  相似文献   

13.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   

14.
15.
Finding suitable electrode materials for alkali‐metal‐ion storage is vital to the next‐generation energy‐storage technologies. Polyantimonic acid (PAA, H2Sb2O6 · nH2O), having pentavalent antimony species and an interconnected tunnel‐like pyrochlore crystal framework, is a promising high‐capacity energy‐storage material. Fabricating electrochemically reversible PAA electrode materials for alkali‐metal‐ion storage is a challenge and has never been reported due to the extremely poor intrinsic electronic conductivity of PAA associated with the highest oxidation state Sb(V). Combining nanostructure engineering with a conductive‐network construction strategy, here is reported a facile one‐pot synthesis protocol for crafting uniform internal‐void‐containing PAA nano‐octahedra in a composite with nitrogen‐doped reduced graphene oxide nanosheets (PAA?N‐RGO), and for the first time, realizing the reversible storage of both Li+ and K+ ions in PAA?N‐RGO. Such an architecture, as validated by theoretical calculations and ex/in situ experiments, not only fully takes advantage of the large‐sized tunnel transport pathways (0.37 nm2) of PAA for fast solid‐phase ionic diffusion but also leads to exponentially increased electrical conductivity (3.3 S cm?1 in PAA?N‐RGO vs 4.8 × 10?10 S cm?1 in bare‐PAA) and yields an inside‐out buffer function for accommodating volume expansion. Compared to electrochemically irreversible bare‐PAA, PAA?N‐RGO manifests reversible conversion‐alloying of Sb(V) toward fast and durable Li+‐ and K+‐ion storage.  相似文献   

16.
Perovskites are promising oxygen carriers for solar‐driven thermochemical fuel production due to higher oxygen exchange capacity. Despite their higher fuel yield capacity, La0.6Sr0.4MnO3 perovskite materials present slow CO2‐splitting kinetics compared with state‐of‐the‐art CeO2. In order to improve the CO production rates, the incorporation of Cr in La0.6Sr0.4MnO3 is explored based on thermodynamic calculations that suggest an enhanced driving force toward CO2 splitting at high temperatures for La0.6Sr0.4CrxMn1?xO3 perovskites. Here, reported is a threefold faster CO fuel production for La0.6Sr0.4Cr0.85Mn0.15O3 compared to conventional La0.6Sr0.4MnO3, and twofold faster than CeO2 under isothermal redox cycling at 1400 °C, and high stability upon long‐term cycling without any evidence of microstructural degradation. The findings suggest that with the proper design in terms of transition metal ion doping, it is possible to adjust perovskite compositions and reactor conditions for improved solar‐to‐fuel thermochemical production under nonconventional solar‐driven thermochemical cycling schemes such as the here presented near isothermal operation.  相似文献   

17.
Electrochemically driven chemical transformations play the key role in controlling storage of energy in chemical bonds and subsequent conversion to power electric vehicles and consumer electronics. The promise of coupling anionic oxygen redox with cationic redox to achieve a substantial increase in capacities has inspired research in a wide range of electrode materials. A key challenge is that these studies have focused on polycrystalline materials, where it is hard to perform precise structural determinations, especially related to the location of light atoms. Here a different approach is utilized and a highly ordered single crystal, Na2?xIrO3 is harnessed, to explore the role of defects and structural transformations in layered transition metal oxide materials on redox‐activity, capacity, reversibility, and stability. Within a combined experimental and theoretical framework, it is demonstrated that 1) it is possible to cycle Na2?xIrO3, offering proof of principle for single‐crystal based batteries 2) structural phase transitions coincide with Ir 4+/Ir 5+ redox couple with no evident contribution from anionic redox 3) strong irreversibility and capacity fade observed during cycling correlates with the Na + migration resulting in progressive growth of an electrochemically inert O3‐type NaIrO3 phase.  相似文献   

18.
A composite electrode composed of reduced graphene oxide‐graphite felt (rGO‐GF) with excellent electrocatalytic redox reversibility toward V2+/V3+ and VO2+/VO2+ redox couples in vanadium batteries was fabricated by a facile hydrothermal method. Compared with the pristine graphite felt (GF) electrode, the rGO‐GF composite electrode possesses abundant oxygen functional groups, high electron conductivity, and outstanding stability. Its corresponding energy efficiency and discharge capacity are significantly increased by 20% and 300%, respectively, at a high current density of 150 mA cm?2. Moreover, a discharge capacity of 20 A h L?1 is obtained with a higher voltage efficiency (74.5%) and energy efficiency (72.0%), even at a large current density of 200 mA cm?2. The prepared rGO‐GF composite electrode holds great promise as a high‐performance electrode for vanadium redox flow battery (VRFB).  相似文献   

19.
Although Li–O2 batteries are promising next‐generation energy storage systems with superior theoretical capacities, they have a serious limitation regarding the large overpotential upon charging that results from the low conductivity of the discharge product. Thus, various redox mediators (RMs) have been widely studied to reduce the overpotential in the charging process, which should promote the oxidation of Li2O2. However, RMs degrade the Li metal anode through a parasitic reaction between the RM and the Li metal, and a solution for this phenomenon is necessary. In this study, an effective method is proposed to prevent the migration of the RM toward the anode side of the lithium using a separator that is modified with a negatively charged polymer. When DMPZ (5,10‐dihydro‐5,10‐dimethylphenazine) is used as an RM, it is found that the modified separator suppresses the migration of DMPZ toward the counter electrode of the Li metal anode. This is investigated by a visual redox couple diffusion test, a morphological investigation, and an X‐ray diffraction study. This advanced separator effectively maximizes the catalytic activity of the redox mediator. Li–O2 batteries using both a highly concentrated DMPZ and the modified separator exhibit improved performance and maintained 90% round‐trip efficiency up to the 20th cycle.  相似文献   

20.
Ce‐rich mixed metal oxides comprise a recently discovered class of ­electrocatalysts for the oxygen evolution reaction (OER). In particular, at current densities below 10 mA cm?2, Ni0.3Fe0.07Co0.2Ce0.43Ox exhibits ­superior activity compared to the corresponding transition metal oxides, despite the relative inactivity of ceria. To elucidate the enhanced activity and underlying catalytic mechanism, detailed structural characterization of this quinary oxide electrocatalyst is reported. Transmission electron microscopy imaging of cross‐section films as‐prepared and after electrochemical testing reveals a stable two‐phase nanostructure composed of 3–5 nm diameter crystallites of fluorite CeO2 intimately mixed with 3–5 nm crystallites of transition metal oxides alloyed in the rock salt NiO structure. Dosing experiments demonstrate that an electron flux greater than ≈1000 e Å?2 s?1 causes the inherently crystalline material to become amorphous. A very low dose rate of 130 e Å?2 s?1 is employed for atomic resolution imaging using inline holography techniques to reveal a nanostructure in which the transition metal oxide nanocrystals form atomically sharp boundaries with the ceria nanocrystals, and these results are corroborated with extensive synchrotron X‐ray absorption spectroscopy measurements. Ceria is a well‐studied cocatalyst for other heterogeneous and electrochemical reactions, and our discovery introduces biphasic cocatalysis as a design concept for improved OER electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号