首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

2.
Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li‐ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate‐based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li2TiO3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li‐ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer‐incorporating Li cells comprising high‐capacity/voltage cathodes with reasonably high mass loading (LiNi0.8Co0.1Mn0.1O2, LiNi0.5Mn1.5O4, and LiMn2O4) show highly stable cycling performance in a carbonate‐based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next‐generation batteries.  相似文献   

3.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

4.
Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm?2 and stable electrodeposition capabilities of 4 mAh cm?2 at an ultrahigh current density of 4 mA cm?2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.  相似文献   

5.
Replacing the liquid electrolyte in lithium batteries with solid‐state ion conductor is promising for next‐generation energy storage that is safe and has high energy density. Here, nanometer‐resolution ionic and electronic transport imaging of Li3PS4 (LPS), a solid‐state electrolyte (SSE), is reported. This nm resolution is achieved by using a logarithm‐scale current amplifier that enhances the current sensitivity to the fA range. Large fluctuations of ion current—one to two orders of magnitude on the LPS and on the LPS region of a polymer/LPS bulk hybrid SSE—that must be mitigated to eliminate Li dendrite formation and growth, are found. This ion current fluctuation is understood in terms of highly anisotropic transport kinetic barriers along the different crystalline axes due to different grain orientations in the polycrystalline and glass ceramic materials. The results on the bulk hybrid SSE show a sharp transition of ionic and electronic transport at the LPS/polymer boundary and decreases in average ionic current with decreasing polyimine particle size and with extensive cycling. The results elucidate the mechanism of polyimine extension into interparticles to prevent Li dendrite growth. This work opens up novel characterization of charge transport, which relates to Li plating and stripping for solid‐state‐batteries.  相似文献   

6.
Li‐rich layered materials are considered to be the promising low‐cost cathodes for lithium‐ion batteries but they suffer from poor rate capability despite of efforts toward surface coating or foreign dopings. Here, spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres are reported as a new high‐rate cathode material for Li‐ion batteries. The synthetic procedure is relatively simple, involving the formation of uniform carbonate precursor under solvothermal conditions and its subsequent transformation to an assembled microsphere that integrates a spinel‐like component with a layered component by a heat treatment. When calcined at 700 °C, the amount of transition metal Mn and Co in the Li‐Mn‐Co‐O microspheres maintained is similar to at 800 °C, while the structures of constituent particles partially transform from 2D to 3D channels. As a consequence, when tested as a cathode for lithium‐ion batteries, the spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres obtained at 700 °C show a maximum discharge capacity of 185.1 mA h g?1 at a very high current density of 1200 mA g?1 between 2.0 and 4.6 V. Such a capacity is among the highest reported to date at high charge‐discharge rates. Therefore, the present spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres represent an attractive alternative to high‐rate electrode materials for lithium‐ion batteries.  相似文献   

7.
Li‐ion batteries as energy storage devices need to be periodically charged for sustainably powering electronic devices owing to their limited capacities. Here, the feasibility of utilizing Li‐ion batteries as both the energy storage and scavenging units is demonstrated. Flexible Li‐ion batteries fabricated from electrospun LiMn2O4 nanowires as cathode and carbon nanowires as anode enable a capacity retention of 90% coulombic efficiency after 50 cycles. Through the coupling between triboelectrification and electrostatic induction, the adjacent electrodes of two Li‐ion batteries can deliver an output peak voltage of about 200 V and an output peak current of about 25 µA under ambient wind‐induced vibrations of a hexafluoropropene–tetrafluoroethylene copolymer film between the two Li‐ion batteries. The self‐charging Li‐ion batteries have been demonstrated to charge themselves up to 3.5 V in about 3 min under wind‐induced mechanical excitations. The advantages of the self‐charging Li‐ion batteries can provide important applications for sustainably powering electronics and self‐powered sensor systems.  相似文献   

8.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

9.
Li‐ion hybrid supercapacitors (Li‐HSCs) hold great promise in future electrical energy storage due to their relatively high power and energy density. However, a major challenge lies in the slow kinetics of Li‐ion intercalation/extraction within metal‐oxide electrodes. Here, it is shown that ultrafast charge storage is realized by confining anatase TiO2 nanoparticles in carbon nanopores to enable a high‐rate anode for Li‐HSCs. The porous carbon with interconnected pore walls and open channels not only works as a conductive host to protect TiO2 from structural degradation but also provides fast pathways for ion/electron transport. As a result, the assembled cells exhibit remarkable rate capabilities with a specific capacity of ≈140 mAh g?1 at a slow charge and ≈60 mAh g?1 at a 3.5 s fast charge. While the charge/discharge process can be completed as fast as that of state‐of‐the‐art electrical double‐layer capacitors (EDLCs), the produced nanocomposites show three to seven times higher volumetric capacitance than activated carbons used in commercial EDLCs with acetonitrile‐based electrolytes. Equally important for some applications in cold climates or the space, the Li‐HSCs can operate at subzero temperatures as low as ?40 °C, which is likely only limited by thermal properties of the acetonitrile (melting point of ?45 °C).  相似文献   

10.
Rechargeable zinc–air batteries may become safe, sustainable, low‐cost, and energy‐dense alternatives to Li‐ion batteries for many applications, but problems associated with today's air‐breathing electrodes limit zinc–air performance. To overcome this challenge, researchers have investigated hundreds of air‐breathing electrode variations over the last decade. Unfortunately, the efficacy of these variations remains ambiguous due to nonstandardized cycling protocols that map to areal‐energy values spanning five orders of magnitude. To compete with Li‐ion batteries, researchers should cycle zinc–air cells at 35 mWh cmgeo?2, but only 8, of the 100 publications reviewed here, breach this threshold. Once the community cycles zinc–air cells at the proposed areal energy and better understands failure mechanisms, lab‐scale results will translate to practical advancements.  相似文献   

11.
High‐performance flexible energy‐storage devices have great potential as power sources for wearable electronics. One major limitation to the realization of these applications is the lack of flexible electrodes with excellent mechanical and electrochemical properties. Currently employed batteries and supercapacitors are mainly based on electrodes that are not flexible enough for these purposes. Here, a three‐dimensionally interconnected hybrid hydrogel system based on carbon nanotube (CNT)‐conductive polymer network architecture is reported for high‐performance flexible lithium ion battery electrodes. Unlike previously reported conducting polymers (e.g., polyaniline, polypyrrole, polythiophene), which are mechanically fragile and incompatible with aqueous solution processing, this interpenetrating network of the CNT‐conducting polymer hydrogel exibits good mechanical properties, high conductivity, and facile ion transport, leading to facile electrode kinetics and high strain tolerance during electrode volume change. A high‐rate capability for TiO2 and high cycling stability for SiNP electrodes are reported. Typically, the flexible TiO2 electrodes achieved a capacity of 76 mAh g–1 in 40 s of charge/discharge and a high areal capacity of 2.2 mAh cm–2 can be obtained for flexible SiNP‐based electrodes at 0.1C rate. This simple yet efficient solution process is promising for the fabrication of a variety of high performance flexible electrodes.  相似文献   

12.
A series of non‐aqueous electrolytes were prepared by dissolving lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) in triglyme and tetraglyme (Gx, x = 3 and 4), respectively, with varied molar ratios. With the electrolytes the cycling performance of Li‐O2 batteries showed a strong dependence on the molar ratios between LiTFSA and Gx. It was found that the molar ratio of 1 to 5 was critical for the cycling‐performance of Li‐O2 batteries. High stability over 20 discharge–recharge cycles at 500 mA/gcarbon and in an O2 flow was obtained in LiTFSA‐(Gx)5 (x = 3 and 4). The discharge product at cathode could be directly detected and identified as the dominant crystalline product Li2O2 on the 1st and 20th discharged electrodes using X‐ray diffraction technique (XRD), which indicates rechargeability and feasibility of the electrolytes LiTFSA‐(Gx)5 (x = 3 and 4) for Li‐O2 batteries. At 1000 mA/gcarbon their capacities could be stabilized for 10 cycles. To our knowledge, this behavior of dependence of cycling performance of Li‐O2 batteries on the concentration of Li salts is presented here for the first time, and it may be extended to other Li salts and solvents and suggest a new route for screening cycling‐stable electrolytes for Li‐O2 batteries.  相似文献   

13.
Li metal batteries are considered a promising candidate for next‐generation rechargeable batteries. However, the practical application of Li metal batteries has been hindered by many challenges, especially the cycling stability of Li anodes due to their uncontrollable dendrite growth, volume fluctuation, and side reactions. These problems are more severe under high‐rate charge/discharge process. Therefore, the realization of stable cycling of Li anodes under high current density is crucial for the practical application of Li metal batteries. In this Progress Report, the authors focus on the stability of metallic Li through interphase design or microstructure construction. The advantages and drawbacks of the first‐generation 3D scaffolds are summarized, and a review of recent research progress in this area is generated. As high‐rate cycling of metallic Li is a complex dynamic problem, a scaffold with high mixed ionic and electronic conductivity may be a promising approach. The different design strategies of mixed ion and electron‐conductive scaffolds working with liquid and solid electrolytes are discussed, along with their technical challenges. Further directions of mixed ion and electron‐conductive scaffolds are also proposed.  相似文献   

14.
Molybdenum disulfide (MoS2), which possesses a layered structure and exhibits a high theoretical capacity, is currently under intensive research as an anode candidate for next generation of Li‐ion batteries. However, unmodified MoS2 suffers from a poor cycling stability and an inferior rate capability upon charge/discharge processes. Herein, a unique nanocomposite comprising MoS2 nanothorns epitaxially grown on the backbone of carbon nanotubes (CNTs) and coated by a layer of amorphous carbon is synthesized via a simple method. The epitaxial growth of MoS2 on CNTs results in a strong chemical coupling between active nanothorns and carbon substrate via C? S bond, providing a high stability as well as a high‐efficiency electron‐conduction/ion‐transportation system on cycling. The outer carbon layer can well‐accommodate the structural strain in the electrode upon lithium‐ion insertion/extraction. When employed as an anode for lithium storage, the prepared material exhibits remarkable electrochemical properties with a high specific capacity of 982 mA h g?1 at 0.1 A g?1, as well as excellent long‐cycling stability (905 mA h g?1 at 1 A g?1 after 500 cycles) and superior rate capability, confirming its potential application in high‐performance Li‐ion batteries.  相似文献   

15.
Li‐rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high‐energy lithium‐ion batteries. Herein, hexagonal La0.8Sr0.2MnO3?y (LSM) is used as a protective and phase‐compatible surface layer to stabilize the Li‐rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is Mn? O? M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM‐coated LM delivers an enhanced reversible capacity of 202 mAh g?1 at 1 C (260 mA g?1) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g?1 at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next‐generation of high‐energy Li‐ion batteries.  相似文献   

16.
The pressing demand on the electronic vehicles with long driving range on a single charge has necessitated the development of next‐generation high‐energy‐density batteries. Non‐aqueous Li‐O2 batteries have received rapidly growing attention due to their higher theoretical energy densities compared to those of state‐of‐the‐art Li‐ion batteries.To make them practical for commercial applications, many critical issues must be overcome, including low round‐trip efficiency and poor cycling stability, which are intimately connected to the problems resulting from cathode degradation during cycling. Encouragingly, during the past years, much effort has been devoted to enhancing the stability of the cathode using a variety of strategies and these have effectively surmounted the challenges derived from cathode deteriorations,thus endowing Li‐O2 batteries with significantly improved electrochemical performances. Here, a brief overview of the general development of Li‐O2 battery is presented. Then, critical issues relevant to the cathode instability are discussed and remarkable achievements in enhancing the cathode stability are highlighted. Finally, perspectives towards the development of next generation highly stable cathode are also discussed.  相似文献   

17.
Lithium‐oxygen batteries represent a significant scientific challenge for high‐rate and long‐term cycling using oxygen electrodes that contain efficient electrocatalysts. The mixed transition metal oxide catalysts provide the most efficient catalytic activity for partial heterogeneous surface cations with oxygen vacancies as the active phase. They include multiple oxidation states and oxygen vacancies. Here, using a combination of transmission electron microscopy, differential electrochemical mass spectrometry, X‐ray photoelectron spectroscopy, and electrochemical properties to probe the surface of the MnMoO4 nanowires, it is shown that the intrinsic MnMoO4 oxygen vacancies on the oxygen electrode are an effective strategy to achieve a high reversibility and high efficiency for lithium‐oxygen (Li‐O2) batteries. The modified MnMoO4 nanowires exhibit a highly stable capacity at a fixed capacity of 5000 mA h gsp?1 (calculated weight of Super P carbon black) during 50 cycles, a high‐rate capability at a current rate of 3000 mA gsp?1 during 70 cycles, and a long‐term reversible capacity during 188 cycles at a fixed capacity of 1000 mA h gsp?1. It is demonstrated that this strategy for creating mixed transition metal oxides (e.g., MnMoO4) may pave the way for the new structural design of electrocatalysts for Li‐O2 batteries.  相似文献   

18.
A systematic study is made of the effect of the nitrogen species on the performance of Li‐ion storage and the capacities of carbon‐based anodes in Li‐ion batteries (LIBs). Electrospun carbon nanofiber (CNF) films are fabricated for use as binder‐free electrodes using a polyacrylonitrile precursor. When the CNF films are subjected to carbonization, transformation occurs from an amorphous to a graphitic structure with associated reduction of nitrogen‐containing functional groups. The structural change strongly affects where the Li ions are stored in the CNF electrodes. It is revealed that Li ions can be stored not only between the graphene layers, but also at the defect sites created by nitrogen functionalization. The latter is mainly responsible for the widely reported improved electrochemical performance of LIBs due to N‐doping of carbon materials. An optimized carbonization temperature of 550 °C is identified, which gives rise to a sufficiently high nitrogen content and thus a high capacity of the electrode.  相似文献   

19.
It is reported that cation disordering in triplite LiFeSO4F can be activated by Li/Fe rearrangement that results from irreversible and nondestructive structural changes during the 1st charge/discharge cycle, especially during the charge. This rearrangement decreases the number of edge‐shared FeO4F2 connection environments, compared to the pristine material. With this activation, triplite LiFeSO4F exhibits several unexpected electrochemical features in subsequent cycles; a decrease in open‐circuit voltage indicating the change in thermodynamic property, negligible volumetric change, enhanced Li diffusion, and facile phase transformation pathway. As a consequence, the cation‐disordered triplite LiFeSO4F achieves superior rate capability up to ≈66 mA h g?1 at 40 C rate (1.5 min discharge) and has excellent capacity retention for 500 cycles at 5 C charge/5 C discharge rate and for 1200 cycles at 2 C charge/2 C discharge rate. Therefore, triplite LiFeSO4F can be one of the most promising electrode materials for Li ion batteries.  相似文献   

20.
Li and Mn‐rich layered oxides, xLi2MnO3·(1–x)LiMO2 (M=Ni, Mn, Co), are promising cathode materials for Li‐ion batteries because of their high specific capacity that can exceed 250 mA h g?1. However, these materials suffer from high 1st cycle irreversible capacity, gradual capacity fading, low rate capability, a substantial charge‐discharge voltage hysteresis, and a large average discharge voltage decay during cycling. The latter detrimental phenomenon is ascribed to irreversible structural transformations upon cycling of these cathodes related to potentials ≥4.5 V required for their charging. Transition metal inactivation along with impedance increase and partial layered‐to‐spinel transformation during cycling are possible reasons for the detrimental voltage fade. Doping of Li, Mn‐rich materials by Na, Mg, Al, Fe, Co, Ru, etc. is useful for stabilizing capacity and mitigating the discharge‐voltage decay of xLi2MnO3·(1–x)LiMO2 electrodes. Surface modifications by thin coatings of Al2O3, V2O5, AlF3, AlPO4, etc. or by gas treatment (for instance, by NH3) can also enhance voltage and capacity stability during cycling. This paper describes the recent literature results and ongoing efforts from our groups to improve the performance of Li, Mn‐rich materials. Focus is also on preparation of cobalt‐free cathodes, which are integrated layered‐spinel materials with high reversible capacity and stable performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号