首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exploring negative electrodes for high‐performance Li‐ion power packs and related issues that are hampering their commercialization is a particularly important topic of research. This study investigates the electrochemical activity of low‐cost and typical conversion‐type hematite (α‐Fe2O3) anodes in practical assemblies, namely, full‐cell configurations. Numerous studies have reported improvements in the electrochemical activity of α‐Fe2O3 in half cells with Li by tuning the morphology or formulating composites with carbonaceous materials. However, these studies are not sufficient to market them for practical assemblies with conventional cathodes like LiCoO2, LiMn2O4, LiFePO4 and its derivatives, mainly because of large polarization problems, such as, hysteresis, irreversible capacity loss, volume variation, and capacity fading. Eliminating these issues in the fabrication of full cells is necessary, and this study reviews relevant research activities and discusses future prospects in the field.  相似文献   

2.
Development of high performance lithium‐ion (Li‐ion) power packs is a topic receiving significant attention in research today. Future development of the Li‐ion power packs relies on the development of high capacity and high rate anodes. More specifically, materials undergo either conversion or an alloying mechanism with Li. However, irreversible capacity loss (ICL) is one of the prime issues for this type of negative electrode. Traditional insertion‐type materials also experience ICL, but it is considered negligible. Therefore, eliminating ICL is crucial before the fabrication of practical Li‐ion cells with conventional cathodes such as LiFePO4, LiMn2O4, etc. There are numerous methods for eliminating ICL such as pre‐treating the electrode, usage of stabilized Li metal powder, chemical and electrochemical lithiation, sacrificial salts for both anode and cathode, etc. The research strategies that have been explored are reviewed here in regards to the elimination of ICL from the high capacity anodes as described. Additionally, mitigating ICL observed from the carbonaceous anodes is discussed and compared.  相似文献   

3.
The synthesis of carbon‐coated Li3Nd3W2O12 (C‐Li3Nd3W2O12), a low voltage insertion anode (0.3 V vs. Li) for a Li‐ion battery, is reported to exhibit extraordinary performance. The low voltage reversible insertion provides an increase in the energy density of Li‐ion power packs. For instance, C‐Li3Nd3W2O12 delivered an energy density of ≈390 Wh kg?1 (based on cathode mass loading) when coupled with an LiMn2O4 cathode with an operating potential of 3.4 V. Furthermore, excellent cycling profiles are observed for C‐Li3Nd3W2O12 anodes both in half and full‐cell configurations. The full‐cell is capable of delivering very stable cycling profiles at high current rates (e.g., 2 C), which clearly suggests the high power capability of such garnet‐type anodes.  相似文献   

4.
Silicon anodes are regarded as one of the most promising alternatives to graphite for high energy‐density lithium‐ion batteries (LIBs), but their practical applications have been hindered by high volume change, limited cycle life, and safety concerns. In this work, nonflammable localized high‐concentration electrolytes (LHCEs) are developed for Si‐based anodes. The LHCEs enable the Si anodes with significantly enhanced electrochemical performances comparing to conventional carbonate electrolytes with a high content of fluoroethylene carbonate (FEC). The LHCE with only 1.2 wt% FEC can further improve the long‐term cycling stability of Si‐based anodes. When coupled with a LiNi0.3Mn0.3Co0.3O2 cathode, the full cells using this nonflammable LHCE can maintain >90% capacity after 600 cycles at C/2 rate, demonstrating excellent rate capability and cycling stability at elevated temperatures and high loadings. This work casts new insights in electrolyte development from the perspective of in situ Si/electrolyte interphase protection for high energy‐density LIBs with Si anodes.  相似文献   

5.
The ongoing surge in demand for high‐energy/flexible rechargeable batteries relentlessly drives technological innovations in cell architecture as well as electrochemically active materials. Here, a new class of all‐nanomat lithium‐ion batteries (LIBs) based on 1D building element‐interweaved heteronanomat skeletons is demonstrated. Among various electrode materials, silicon (Si, for anode) and overlithiated layered oxide (OLO, for cathode) materials are chosen as model systems to explore feasibility of this new cell architecture and achieve unprecedented cell capacity. Nanomat electrodes, which are completely different from conventional slurry‐cast electrodes, are fabricated through concurrent electrospinning (for polymeric nanofibers) and electrospraying (for electrode materials/carbon nanotubes (CNTs)). Si (or rambutan‐shaped OLO/CNT composite) powders are compactly embedded in the spatially interweaved polymeric nanofiber/CNT heteromat skeletons that play a crucial role in constructing 3D‐bicontinuous ion/electron transport pathways and allow for removal of metallic foil current collectors. The nanomat Si anodes and nanomat OLO cathodes are assembled with nanomat Al2O3 separators, leading to the fabrication of all‐nanomat LIB full cells. Driven by the aforementioned structural/chemical uniqueness, the all‐nanomat full cell shows exceptional improvement in electrochemical performance (notably, cell‐based gravimetric energy density = 479 W h kgCell?1) and also mechanical deformability, which lie far beyond those achievable with conventional LIB technologies.  相似文献   

6.
Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(NixMnyCoz)O2 (NMC) (x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNixMnyCozO2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from ?25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi0.6Mn0.2Co0.2O2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.  相似文献   

7.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

8.
Transition metal ion dissolution due to hydrofluoric acid attack is a long‐standing issue in the Mn‐based spinel cathode materials of lithium‐ion batteries (LIBs). Numerous strategies have been proposed to address this issue, but only a fragmentary solution has been established. In this study, reported is a seaweed‐extracted multitalented material, namely, agar, for high‐performance LIBs comprising Mn‐based cathode materials at a practical loading density (23.1 mg cm?2 for LiMn2O4 and 10.9 mg cm?2 for LiNi0.5Mn1.5O4, respectively). As a surface modifier, 3‐glycidoxypropyl trimethoxysilane (GPTMS) is employed to enable the agar to have different phase separation behaviors during the nonsolvent‐induced phase separation process, thus eventually leading to the fabrication of an outstanding separator membrane that features a well‐defined porous structure, superior mechanical robustness, high ionic conductivity, and good thermal stability. The GPTMS‐modified agar separator membrane coupled with a pure agar binder to the LiNi0.5Mn1.5O4/graphite full cell leads to exceptional improvement in electrochemical performance outperforming binders and separator membrane in current commercial products even at 55 °C; this improvement is due to beneficial features such as Mn2+ chelation and PF5 stabilizing capabilities. This study is believed to provide insights into the potential energy applications of natural seaweeds.  相似文献   

9.
High energy density Li‐ion hybrid flow capacitors are demonstrated by employing LiMn2O4 and activated carbon slurry electrodes. Compared to the existing aqueous flow electrochemical capacitors, the hybrid one exhibits much higher energy densities due to the introduction of high capacity Li‐insertion materials (e.g., LiMn2O4 in the present work) as the flowable electrode with asymmetrical cell configuration. A record energy density, i.e., 23.4 W h kg?1 at a power of 50.0 W kg?1 has been achieved for aqueous flow capacitors tested at static condition reported to date. A full operational Li‐ion flow capacitor tested in an intermittent‐flow mode has also been demonstrated. The Li‐ion hybrid flow capacitor shows great promise for high‐rate grid applications.  相似文献   

10.
Ionogels are considered promising electrolytes for safe lithium‐ion batteries (LIBs) because of their low flammability, good thermal stability, and wide electrochemical stability window. Conventional ionic liquid‐based ionogels, however, face two main challenges; poor mechanical property and low Li‐ion transfer number. In this work, a novel solvate ionogel electrolyte (SIGE) based on an organic–inorganic double network (DN) is designed and fabricated through nonhydrolytic sol–gel reaction and in situ polymerization processes. The unprecedented SIGE possesses high toughness (bearing the deformation under the pressure of 80 MPa without damage), high Li‐ion transfer number of 0.43, and excellent Li‐metal compatibility. As expected, the LiFePO4/Li cell using the newly developed SIGE delivers a high capacity retention of 95.2% over 500 cycles, and the average Coulombic efficiency is as high as 99.8%. Moreover, the Ni‐rich LiNi0.8Co0.1Mn0.1O2 (NCM811)/Li cell based on the modified SIGE achieves a high Coulombic efficiency of 99.4%, which outperforms previous solid/quasi‐solid‐state NCM811‐based LIBs. Interestingly, the SIGE‐based pouch cells are workable under extreme conditions (e.g., severely deforming or clipping into segments). In terms of those unusual features, the as‐obtained SIGE holds great promise for next‐generation flexible and safe energy‐storage devices.  相似文献   

11.
Subzero‐temperature Li‐ion batteries (LIBs) are highly important for specific energy storage applications. Although the nickel‐rich layered lithium transition metal oxides(LiNixCoyMnzO2) (LNCM) (x > 0.5, x + y +z = 1) are promising cathode materials for LIBs, their very slow Li‐ion diffusion is a main hurdle on the way to achieve high‐performance subzero‐temperature LIBs. Here, a class of low‐temperature organic/inorganic hybrid cathode materials for LIBs, prepared by grafting a conducting polymer coating on the surface of 3 µm sized LiNi0.6Co0.2Mn0.2O2 (LNCM‐3) material particles via a greener diazonium soft‐chemistry method is reported. Specifically, LNCM‐3 particles are uniformly coated with a thin polyphenylene film via the spontaneous reaction between LNCM‐3 and C6H5N2+BF4?. Compared with the uncoated one, the polyphenylene‐coated LNCM‐3 (polyphenylene/LNCM‐3) has shown much improved low‐temperature discharge capacity (≈148 mAh g?1 at 0.1 C, ?20 °C), outstanding rate capability (≈105 mAh g?1 at 1 C, ?20 °C), and superior low‐temperature long‐term cycling stability (capacity retention is up to 90% at 0.5 C over 1150 cycles). The low‐temperature performance of polyphenylene/LNCM‐3 is the best among the reported state‐of‐the art cathode materials for LIBs. The present strategy opens up a new avenue to construct advanced cathode materials for wider range applications.  相似文献   

12.
Lithium metal batteries (LMBs) combining a Li metal anode with a transition metal (TM) cathode can achieve higher practical energy densities (Wh L?1) than Li/S or Li/O2 cells. Research for improving the electrochemical behavior of the Li metal anode by, for example, modifying the liquid electrolyte is often conducted in symmetrical Li/Li or Li/Cu cells. This study now demonstrates the influence of the TM cathode on the Li metal anode, thus full cell behavior is analyzed in a way not considered so far in research with LMBs. Therefore, the deposition/dissolution behavior of Li metal and the resulting morphology is investigated with three different cathode materials (LiNi0.5Mn1.5O4, LiNi0.6Mn0.2Co0.2O2, and LiFePO4) by post mortem analysis with a scanning electron microscope. The observed large differences of the Li metal morphology are ascribed to the dissolution and crossover of TMs found deposited on Li metal and in the electrolyte by X‐ray photoelectron spectroscopy, energy‐dispersive X‐ray spectroscopy, and total reflection X‐ray fluorescence analysis. To support this correlation, the TM dissolution is simulated by adding Mn salt to the electrolyte. This study offers new insights into the cross talk between the Li metal anodes and TM cathodes, which is essential, when investigating Li metal electrodes for LMB full cells.  相似文献   

13.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   

14.
Iron oxides, such as Fe2O3 and Fe3O4, have recently received increased attention as very promising anode materials for rechargeable lithium‐ion batteries (LIBs) because of their high theoretical capacity, non‐toxicity, low cost, and improved safety. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, recent research progress in the rational design and synthesis of diverse iron oxide‐based nanomaterials and their lithium storage performance for LIBs, including 1D nanowires/rods, 2D nanosheets/flakes, 3D porous/hierarchical architectures, various hollow structures, and hybrid nanostructures of iron oxides and carbon (including amorphous carbon, carbon nanotubes, and graphene). By focusing on synthesis strategies for various iron‐oxide‐based nanostructures and the impacts of nanostructuring on their electrochemical performance, novel approaches to the construction of iron‐oxide‐based nanostructures are highlighted and the importance of proper structural and compositional engineering that leads to improved physical/chemical properties of iron oxides for efficient electrochemical energy storage is stressed. Iron‐oxide‐based nanomaterials stand a good chance as negative electrodes for next generation LIBs.  相似文献   

15.
Si anodes suffer an inherent volume expansion problem. The consensus is that hydrogen bonds in these anodes are preferentially constructed between the binder and Si powder for enhanced adhesion and thus can improve cycling performance. There has been little research done in the field of understanding the contribution of the binder's mechanical properties to performance. Herein, a simple but effective strategy is proposed, combining hard/soft polymer systems, to exploit a robust binder with a 3D interpenetrating binding network (3D‐IBN) via an in situ polymerization. The 3D‐IBN structure is constructed by interweaving a hard poly(furfuryl alcohol) as the skeleton with a soft polyvinyl alcohol (PVA) as the filler, buffering the dramatic volume change of the Si anode. The resulting Si anode delivers an areal capacity of >10 mAh cm?2 and enables an energy density of >300 Wh kg?1 in a full lithium‐ion battery (LIB) cell. The component of the interweaving binder can be switched to other polymers, such as replacing PVA by thermoplastic polyurethane and styrene butadiene styrene. Such a strategy is also effective for other high‐capacity electroactive materials, e.g., Fe2O3 and Sn. This finding offers an alternative approach in designing high‐areal‐capacity electrodes through combined hard and soft polymer binders for high‐energy‐density LIBs.  相似文献   

16.
Aqueous lithium/sodium‐ion batteries (AIBs) have received increasing attention because of their intrinsic safety. However, the narrow electrochemical stability window (1.23 V) of the aqueous electrolyte significantly hinders the development of AIBs, especially the choice of electrode materials. Here, an aqueous electrolyte composed of LiClO4, urea, and H2O, which allows the electrochemical stability window to be expanded to 3.0 V, is developed. Novel [Li (H2O)x(organic)y]+ primary solvation sheath structures are developed in this aqueous electrolyte, which contribute to the formation of solid–electrolyte interface layers on the surfaces of both the cathode and anode. The expanded electrochemical stability window enables the construction of full aqueous Li‐ion batteries with LiMn2O4 cathodes and Mo6S8 anodes, demonstrating an operating voltage of 2.1 V and stability over 2000 cycles. Furthermore, a symmetric aqueous Na‐ion battery using Na3V2(PO4)3 as both the cathode and anode exhibits operating voltage of 1.7 V and stability over 1000 cycles at a rate of 5 C.  相似文献   

17.
With the rapidly growing demand for low‐cost and safe energy storage, the advanced battery concepts have triggered strong interests beyond the state‐of‐the‐art Li‐ion batteries (LIBs). Herein, a novel hybrid Li/Na‐ion full battery (HLNIB) composed of the high‐energy and lithium‐free Na3V2(PO4)2O2F (NVPOF) cathode and commercial graphite anode mesophase carbon micro beads is for the first time designed. The assembled HLNIBs exhibit two high working voltage at about 4.05 and 3.69 V with a specific capacity of 112.7 mA h g?1. Its energy density can reach up to 328 W h kg?1 calculated from the total mass of both cathode and anode materials. Moreover, the HLNIBs show outstanding high‐rate capability, long‐term cycle life, and excellent low‐temperature performance. In addition, the reaction kinetics and Li/Na‐insertion/extraction mechanism into/out NVPOF is preliminarily investigated by the galvanostatic intermittent titration technique and ex situ X‐ray diffraction. This work provides a new and profound direction to develop advanced hybrid batteries.  相似文献   

18.
Lithium (Li) metal anodes are promising candidates for high‐energy‐density batteries. However, uncontrollable dendritic plating behavior and infinite volume expansion are hindering their practical applications. Herein, a novel CuO@Ti‐mesh (CTM) is prepared by microwave‐assisted reactions, followed by pressing on Li wafers, leading to Li/CuO@Ti‐mesh (LCTM) composite anodes. The lithiophilic CuO nanoflowers on Ti‐mesh provides evenly distributed nucleation sites, inducing uniform Li‐ion lateral plating, which can effectively inhibit the growth of Li dendrites and volume expansion during cycling. The as‐prepared LCTM composite anode exhibits high Coulombic efficiency (CE) of 94.2% at 10 mA cm‐2 over 90 cycles. Meanwhile, the LCTM anode shows a low overpotential of 50 mV at 10 mA cm‐2 over 16 000 cycles and a low overpotential of 90 and 250 mV even at ultrahigh current densities of 20 and 40 mA cm‐2. When paired with Li4Ti5O12 (LTO), it enhances the capacity retention of LTO/Li wafer full cells by about two times from 36.6% to 73.0% and 42.0% to 80.0% at 5C and 10C with long‐term cycling. It is hoped that this LCTM anode with ultrahigh rates and ultralong cycle life may put Li‐metal anode forward to practical applications, such as in Li–S, Li‐air batteries, etc.  相似文献   

19.
The introduction of 3D wettable current collectors is one of the practical strategies toward realizing high reversibility of lithium (Li) metal anodes, yet its effect is usually insufficient owing to single electron‐conductive skeleton. Here, homogeneous Li deposition behavior and enhanced Coulombic efficiency is reported for electrochemically lithiated Cu3P nanowires, owing to the formation of a mixed ion/electron‐conducting skeleton (MIECS). In particular, by evaluating the Gibbs free energy change, the possible chemical reaction between Cu3P and molten Li is used to construct a MIECS containing Li3P and Cu–Li alloy phase. The successful conversion of Cu3P nanowires to Li3P and Cu–Li alloy nanocomposite not only greatly reduces the surface energy between molten Li and Cu3P, but also induces uniform Li stripping/plating behavior via balanced ion/electron transport. Thus, the as‐obtained Li@MIECS composite anode displays superior cycling stability in both symmetric cells and full cells. This work provides a promising option for the preparation of high‐performance composite Li anodes containing MIECS by thermally pre‐storing Li.  相似文献   

20.
Integrated design of both porous structure and crystalline morphology is expected to open up the way to a new class of materials. This report demonstrates new nanostructured Li4Ti5O12 materials with hierarchically porous structures and flower‐like morphologies. Electrochemical studies of the electrodes of Li‐ion and Na‐ion batteries clearly reveal the advantage of nanoarchitectural design of active materials. In addition, the temperature dependence of Na+‐insertion/extraction capacity in relation to Li4Ti5O12 electrodes is for the first time evaluated and it is found that elevation of the cell operating temperature effectively improves the rate capability of the Na‐ion batteries. Based on the new findings, it is suggested that specially designed Li4Ti5O12 materials allow for high‐performance Na‐ion batteries that are available as large‐scale storage devices for applications such as automotive and stationary energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号