首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The use of processing additives has emerged as a powerful approach for the optimization of active layer performance in organic photovoltaic devices. However, definitive physical mechanisms explaining the impact of additives have not yet been determined. To elucidate the role of additives, we have studied the time evolution of structure in polymer‐fullerene films blade‐coated from additive containing solutions using in‐situ spectroscopic ellipsometry and UV–vis transmission. Additives that are poor solvents for poly(3‐hexylthiophene) (P3HT), such as 1,8‐octanedithiol, and additives that are good solvents for P3HT, such as 1‐chloronapthalene, both promote improved polymer order, phase segregation, and device performance. Regardless of the presence or type of additive, the polymer order develops under conditions of extreme supersaturation. Additives, regardless of whether they are solvents for P3HT, promote earlier polymer aggregation compared to additive ‐ free solutions presumably by degrading the solvent quality. We find evidence that the details of the final film morphology may be linked to the influence of the substrate and long‐time film plasticization in the cases of the non‐solvent and solvent respectively.  相似文献   

2.
Design rules are presented for significantly expanding sequential processing (SqP) into previously inaccessible polymer:fullerene systems by tailoring binary solvent blends for fullerene deposition. Starting with a base solvent that has high fullerene solubility, 2‐chlorophenol (2‐CP), ellipsometry‐based swelling experiments are used to investigate different co‐solvents for the fullerene‐casting solution. By tuning the Flory‐Huggins χ parameter of the 2‐CP/co‐solvent blend, it is possible to optimally swell the polymer of interest for fullerene interdiffusion without dissolution of the polymer underlayer. In this way solar cell power conversion efficiencies are obtained for the PTB7 (poly[(4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)(3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl)]) and PC61BM (phenyl‐C61‐butyric acid methyl ester) materials combination that match those of blend‐cast films. Both semicrystalline (e.g., P3HT (poly(3‐hexylthiophene‐2,5‐diyl)) and entirely amorphous (e.g., PSDTTT (poly[(4,8‐di(2‐butyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐(2,5‐bis(4,4′‐bis(2‐octyl)dithieno[3,2‐b:2′3′‐d]silole‐2,6‐diyl)thiazolo[5,4‐d]thiazole)]) conjugated polymers can be processed into highly efficient photovoltaic devices using the solvent‐blend SqP design rules. Grazing‐incidence wide‐angle x‐ray diffraction experiments confirm that proper choice of the fullerene casting co‐solvent yields well‐ordered interdispersed bulk heterojunction (BHJ) morphologies without the need for subsequent thermal annealing or the use of trace solvent additives (e.g., diiodooctane). The results open SqP to polymer/fullerene systems that are currently incompatible with traditional methods of device fabrication, and make BHJ morphology control a more tractable problem.  相似文献   

3.
We report the fabrication of high performance organic solar cells by spray‐coating the photoactive layer in air. The photovoltaic blends consist of a blend of carbazole and benzothiadiazole based donor–acceptor copolymers and the fullerene derivative PC70BM. Here, we formulate a number of photovoltaic inks using a range of solvent systems that we show can all be deposited by spray casting. We use a range of techniques to characterize the structure of such films, and show that spray‐cast films have comparable surface roughness to spin‐cast films and that vertical stratification that occurs during film drying reduces the concentration of PCBM towards the underlying PEDOT:PSS interface. We also show that the active layer thickness and the drying kinetics can be tuned through control of the substrate temperature. High power conversion efficiencies of 4.3%, 4.5% and 4.6% were obtained for solar cells made from a blend of PC70BM with the carbazole‐based co‐polymers PCDTBT, P2 and P1. By applying a low temperature anneal after the deposition of the cathode, the efficiency of spray‐cast solar‐cells based on a P2:PC70BM blend is increased to 5.0%. Spray coating holds significant promise as a technique capable of fabricating large‐area, high performance organic solar cells in air.  相似文献   

4.
To advance polymer solar cells (PSCs) toward real‐world applications, it is crucial to develop materials that are compatible with a low‐cost large‐scale manufacturing technology. In this context, a practically useful polymer should fulfill several critical requirements: the capability to provide high power conversion efficiencies (PCEs) via low‐cost fabrication using environmentally friendly solvents under mild thermal conditions, resulting in an active layer that is thick enough to minimize defects in large‐area films. Here, the development of new photovoltaic polymers is reported through rational molecular design to meet these requirements. Benzodithiophene (BDT)‐difluorobenzoxadiazole (ffBX)‐2‐decyltetradecyl (DT), a wide‐bandgap polymer based on ffBX and BDT emerges as the first example that fulfills the qualifications. When blended with a low‐cost acceptor (C60‐fullerene derivative), BDT‐ffBX‐DT produces a PCE of 9.4% at active layer thickness over 250 nm. BDT‐ffBX‐DT devices can be fabricated from nonhalogenated solvents at low processing temperature. The success of BDT‐ffBX‐DT originates from its appropriate electronic structure and charge transport characteristics, in combination with a favorable face‐on orientation of the polymer backbone in blends, and the ability to form proper phase separation morphology with a fibrillar bicontinuous interpenetrating network in bulk‐heterojunction films. With these characteristics, BDT‐ffBX‐DT represents a meaningful step toward future everyday applications of polymer solar cells.  相似文献   

5.
The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐octylthieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene‐rich domains, which cause extensive charge‐carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene‐rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin‐casting and this network acts as a template that prevents large‐scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene‐rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells.  相似文献   

6.
This study provides new evidence on a long postulated mechanism of phase separation in a polymer/fullerene mixture during spin coating for controlled nanodomains of oriented crystallization and heterojunctions that favor applications in polymer solar cells (PSCs). The simultaneous nanoscale phase separation and crystallization during spin coating of the mixture are traced using in situ grazing‐incidence small‐ and wide‐angle X‐ray scattering. Combined with the complimentary results from time‐resolved optical reflectance spectroscopy, transient stratification of the liquid film during the transition from the flow‐ to evaporation‐dominated stage of spin coating is disclosed; the vertical liquid–liquid phase separation incubates a supersaturated skin layer where fullerene aggregation and polymer crystallization occur and develop concomitantly. Shortly after the transition, the near‐surface structural development is largely pinned, leaving the solvent‐rich bottom layer to diminish via solvent diffusion and evaporation through the thickened skin layer that finally condenses into the spin‐coated film upon solvent depletion. The shear‐enhanced surface layering and supersaturation for the surface‐down nanostructural development are unexpected in all the existing structural models for PSCs. The mechanistic understanding of coupled vertical phase separation and local nanosegregation provides new insights and alternative strategy to the morphology control of spin‐cast PSC active layers in particular and various solution‐processed polymeric films in general.  相似文献   

7.
To realize high power conversion efficiencies (PCEs) in green‐solvent‐processed all‐polymer solar cells (All‐PSCs), a long alkyl chain modified perylene diimide (PDI)‐based polymer acceptor PPDIODT with superior solubility in nonhalogenated solvents is synthesized. A properly matched PBDT‐TS1 is selected as the polymer donor due to the red‐shifted light absorption and low‐lying energy level in order to achieve the complementary absorption spectrum and matched energy level between polymer donor and polymer acceptor. By utilizing anisole as the processing solvent, an optimal efficiency of 5.43% is realized in PBDT‐TS1/PPDIODT‐based All‐PSC with conventional configuration, which is comparable with that of All‐PSCs processed by the widely used binary solvent. Due to the utilization of an inverted device configuration, the PCE is further increased to over 6.5% efficiency. Notably, the best‐performing PCE of 6.58% is the highest value for All‐PSCs employing PDI‐based polymer acceptors and green‐solvent‐processed All‐PSCs. The excellent photovoltaic performance is mainly attributed to a favorable vertical phase distribution, a higher exciton dissociation efficiency (Pdiss) in the blend film, and a higher electrode carrier collection efficiency. Overall, the combination of rational molecular designing, material selection, and device engineering will motivate the efficiency breakthrough in green‐solvent‐processed All‐PSCs.  相似文献   

8.
It is commonly believed that large dielectric constants are required for efficient charge separation in polymer photovoltaic devices. However, many polymers used in high‐performance solar cells do not possess high dielectric constants. In this work, the effect of polymer–fullerene interactions on the dielectric environment of the active layer blend and the device performance for several donor–acceptor conjugated polymer systems is investigated. It is found that, while none of the high‐performing polymers studied has a dielectric constant value larger than 3, all polymer–fullerene blends have a significantly larger dielectric constant compared to their pristine constituents. Additionally, it is found that the blend dielectric constant reaches a maximum value in fully optimized devices. Using PTB7:PC71BM blends as an example, it is showed that, in addition to a small increase in the dielectric constant, devices fabricated using the optimum processing additive concentration exhibit almost 3X larger excited state polarizability. This large increase in excited state polarizability results in a substantial difference in short‐circuit current and ultimately device performance. The results show that the excited state polarizability critically depends on polymer–fullerene interactions, and can be a leading indicator of device performance for a given material system.  相似文献   

9.
The complex microstructure of organic semiconductor mixtures continues to obscure the connection between the active layer morphology and photovoltaic device performance. For example, the ubiquitous presence of mixed phases in the active layer of polymer/fullerene solar cells creates multiple morphologically distinct interfaces which are capable of exciton dissociation or charge recombination. Here, it is shown that domain compositions and fullerene aggregation can strongly modulate charge photogeneration at ultrafast timescales through studies of a model system, mixtures of a low band‐gap polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]germole)‐2,6‐diyl‐alt‐(2,1,3‐benzothia‐diazole)‐4,7‐diyl], and [6,6]‐phenyl‐C71‐butyric acid methyl ester. Structural characterization using energy‐filtered transmission electron microscopy (EFTEM) and resonant soft X‐ray scattering shows similar microstructures even with changes in the overall film composition. Composition maps generated from EFTEM, however, demonstrate that compositions of mixed domains vary significantly with overall film composition. Furthermore, the amount of polymer in the mixed domains is inversely correlated with device performance. Photoinduced absorption studies using ultrafast infrared spectroscopy demonstrate that polaron concentrations are highest when mixed domains contain the least polymer. Grazing‐incidence X‐ray scattering results show that larger fullerene coherence lengths are correlated to higher polaron yields. Thus, the purity of the mixed domains is critical for efficient charge photogeneration because purity modulates fullerene aggregation and electron delocalization.  相似文献   

10.
Single‐walled carbon nanotube (SWCNT) fullerene solar cells have recently attracted attention due to their low‐cost processing, high environmental stability, and near‐infrared absorption. While SWCNT–fullerene bulk‐heterojunction photovoltaics employing an inverted architecture and polychiral SWCNTs have achieved efficiencies exceeding 3% over device areas of ≈1 mm2, large‐area SWCNT solar cells have not yet been demonstrated. In particular, with increasing device area, spatial inhomogeneities in the SWCNT film have limited overall device performance. Here, 1,8‐diiodooctane (DIO) is utilized as a solvent additive to reduce fullerene domain size and to improve SWCNT–fullerene bulk‐heterojunction morphology. Under optimized conditions, DIO elucidates the influence of SWCNT chiral distribution on overall device performance, revealing a tradeoff between short‐circuit current density and fill factor as a function of the chirality distribution present. The combination of SWCNT chirality distribution engineering and improved spatial homogeneity via solvent additives enables area‐scaling of SWCNT–fullerene solar cells with performance comparable to small‐area cells.  相似文献   

11.
The complex intermixing morphology is critical for the performance of the nanostructured polymer:fullerene bulk heterojunction (BHJ) solar cells. Here, time resolved in situ grazing incidence X‐ray diffraction and grazing incidence small angle X‐ray scattering are used to track the structure formation of BHJ thin films formed from the donor polymer poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) with different fullerene derivative acceptors. The formation of stable bimolecular crystals through the intercalation of fullerene molecules between the side chains of polymer crystallites is investigated. Such systems exhibit more efficient exciton dissociation but lower photo‐conductance and faster decay of charges. On the basis of the experimental observations, intercalation obviously takes place before or with the formation of the crystalline polymer domains. It results in more stable structures whose volume remains constant upon further drying. Three distinct periods of drying are observed and the formation of unidimensional fullerene channels along the π‐stacking direction of polymer crystallites is confirmed.  相似文献   

12.
The side‐chain architecture of alternating copolymers based on thiophene and quinoxaline (TQ) is found to strongly influence the solubility and photovoltaic performance. In particular, TQ polymers with different linear or branched alkyloxy‐phenyl side chains on the quinoxaline unit are compared. Attaching the linear alkyloxy side‐chain segment at the meta‐ instead of the para‐position of the phenyl ring reduces the planarity of the backbone as well as the ability to order. However, the delocalisation across the backbone is not affected, which permits the design of high‐performance TQ polymers that do not aggregate in solution. The use of branched meta‐(2‐ethylhexyl)oxy‐phenyl side‐chains results in a TQ polymer with an intermediate degree of order. The reduced tendency for aggregation of TQ polymers with linear meta‐alkyloxy‐phenyl persists in the solid state. As a result, it is possible to avoid the decrease in charge‐transfer state energy that is observed for bulk‐heterojunction blends of more ordered TQ polymers and fullerenes. The associated gain in open‐circuit voltage of disordered TQ:fullerene solar cells, accompanied by a higher short‐circuit current density, leads to a higher power conversion efficiency overall. Thus, in contrast to other donor polymers, for TQ polymers there is no need to compromise between solubility and photovoltaic performance.  相似文献   

13.
The power conversion efficiency of poly(N‐(2‐ethylhexyl)‐3,6‐bis(4‐dodecyloxythiophen‐2‐yl)phthalimide) (PhBTEH)/fullerene bulk heterojunction solar cells improves from 0.43 to 4.1% by using a processing additive. The underlying mechanism for the almost 10‐fold enhancement in solar cell performance is found to be inhibition of fullerene intercalation into the polymer side chains and regulation of the relative crystallization/aggregation rates of the polymer and fullerene. An optimal interconnected two‐phase morphology with 15–20 nm domains is obtained when a processing additive is used compared with 100–300 nm domains without the additive. The results demonstrate that a processing additive provides an effective means of controlling both the fullerene intercalation in polymer/fullerene blends and the domain sizes of their phase‐separated nanoscale morphology.  相似文献   

14.
Polymer/small molecule/fullerene based ternary solar cells have made great progress and have attracted considerable attention in recent years. The addition of small molecules can effectively compensate for the disadvantages of polymer solar cells, such as increasing the light‐harvesting ability, providing cascade energy levels, and tuning the morphology. Thus, polymer/small molecule/fullerene based ternary solar cells are promising candidates to obtain further improvements in photovoltaic performance for organic solar cells. This article summarizes the developments of ternary solar cells with small molecules as third components, and represents the possible photo‐physics process in the ternary blends. In addition, the challenges and perspectives for ternary solar cells are discussed.  相似文献   

15.
In this work, a new combination of a wide bandgap polymer poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]‐dithiophene‐alt‐N‐(2‐hexyldecyl)‐5′5‐bis[3‐(decylthio)thiophene‐2‐yl]‐2′2‐bithiophene‐3′3‐dicarboximide] (PBTIBDTT) and a non‐fullerene small molecule acceptor based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile groups with one fluorine substituent (ITIC‐F) is proposed, and as‐cast non‐fullerene organic solar cells (NFOSCs) with 11.2% efficiency are achieved. The device efficiencies are also insensitive to the variation of photoactive layer (PAL) thickness and can maintain over 9% efficiency as PAL thickness increases to 350 nm, which is one of the best results for as‐cast organic solar cells. More importantly, non‐fullerene organic photovoltaic (OPV) modules are demonstrated via laser ablation technique for the first time, which delivers a record efficiency of 8.6% (with active area of 3.48 cm2) among large‐area OPV modules. Furthermore, the morphology and performance evolutions of the as‐cast NFOSCs and the ones processed with solvent additive are systematically investigated. The results demonstrate the great advantage of as‐cast solar cells in achieving constant morphology and high performance with thick PALs. The NFOSCs fabricated with simple procedure, insensitive to film thickness and compatible with large‐area OPV modules, show significant potential for application the future.  相似文献   

16.
A facile and low‐temperature (125 °C) solution‐processed Al‐doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates is described. The ammonia‐treatment of the aqueous AZO nanoparticle solution produces compact, crystalline, and smooth thin films, which retain the aluminum doping, and eliminates/reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical modifications of the buffer layer, which is a common requirement for many metal oxide buffer layers to yield efficient solar cells. Also highly efficient solar cells are achieved with thick AZO films (>50 nm), highlighting the suitability of this material for roll‐to‐roll coating. Preliminary results on the applicability of AZO as electron injection layer in F8BT‐based polymer light emitting diode are also presented.  相似文献   

17.
Polymer bulk heterojunction solar cells based on low bandgap polymer:fullerene blends are promising for next generation low‐cost photovoltaics. While these solution‐processed solar cells are compatible with large‐scale roll‐to‐roll processing, active layers used for typical laboratory‐scale devices are too thin to ensure high manufacturing yields. Furthermore, due to the limited light absorption and optical interference within the thin active layer, the external quantum efficiencies (EQEs) of bulk heterojunction polymer solar cells are severely limited. In order to produce polymer solar cells with high yields, efficient solar cells with a thick active layer must be demonstrated. In this work, the performance of thick‐film solar cells employing the low‐bandgap polymer poly(dithienogermole‐thienopyrrolodione) (PDTG‐TPD) was demonstrated. Power conversion efficiencies over 8.0% were obtained for devices with an active layer thickness of 200 nm, illustrating the potential of this polymer for large‐scale manufacturing. Although an average EQE > 65% was obtained for devices with active layer thicknesses > 200 nm, the cell performance could not be maintained due to a reduction in fill factor. By comparing our results for PDTG‐TPD solar cells with similar P3HT‐based devices, we investigated the loss mechanisms associated with the limited device performance observed for thick‐film low‐bandgap polymer solar cells.  相似文献   

18.
The room temperature (RT) processability of the photoactive layers in polymer solar cells (PSCs) from halogen‐free solvent along with their highly reproducible power conversion efficiencies (PCEs) and intrinsic thickness tolerance are extremely desirable for the large‐area roll‐to‐roll (R2R) production. However, most of the photoactive materials in PSCs require elevated processing temperatures due to their strong aggregation, which are unfavorable for the industrial R2R manufacturing of PSCs. These limiting factors for the commercialization of PSCs are alleviated by synthesizing random terpolymers with components of (2‐decyltetradecyl)thiophen‐2‐yl)naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole and bithiophene substituted with methyl thiophene‐3‐carboxylate (MTC). In contrast to the temperature‐dependent PNTz4T polymer, the resulting random terpolymers (PNTz4T‐MTC) show better solubility, slightly reduced crystallinity and aggregation, and weaker intermolecular interaction, thus enabling PNTz4T‐MTC to be processed at RT from a halogen‐free solvent. Particularly, the PNTz4T‐5MTC‐based photoactive layer exhibits an excellent PCE of 9.66%, which is among the highest reported PCEs for RT and ecofriendly halogen‐free solvent processed fullerene‐based PSCs, and a thickness tolerance with a PCE exceeding 8% from 100 to 520 nm. Finally, large‐area modules fabricated with the PNTz4T and PNTz4T‐5MTC polymer have shown 4.29% and 6.61% PCE respectively, with an area as high as 54.45 cm2 in air.  相似文献   

19.
The poor photovoltaic performance of state‐of‐the‐art blends of poly[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl] (PTB7) and [6,6]‐phenyl‐C61‐butyric acid (PCBM) at large active layer thicknesses is studied using space‐charge‐limited current mobility and photovoltaic device measurements. The poor performance is found to result from relatively low electron mobility. This is attributed to the low tendency of PTB7 to aggregate, which reduces the ability of the fullerene to form a connected network. Increasing the PCBM content 60–80 wt% increases electron mobility and accordingly improves performance for thicker devices, resulting in a fill factor (FF) close to 0.6 at 300 nm. The result confirms that by improving only the connectivity of the fullerene phase, efficient electron and hole collection is possible for 300 nm‐thick PTB7:PCBM devices. Furthermore, it is shown that solvent additive 1,8‐diiodooctane (DIO), used in the highest efficiency PTB7:PCBM devices, does not improve the thickness dependence and, accordingly, does not lead to an increase in either hole or electron mobility or in the carrier lifetime. A key challenge for researchers is therefore to develop new methods to ensure connectivity in the fullerene phase in blends without relying on either a large excess of fullerene or strong aggregation of the polymer.  相似文献   

20.
It is demonstrated that a combination of microsecond transient photocurrent measurements and film morphology characterization can be used to identify a charge‐carrier blocking layer within polymer:fullerene bulk‐heterojunction solar cells. Solution‐processed molybdenum oxide (s‐MoOx) interlayers are used to control the morphology of the bulk‐heterojunction. By selecting either a low‐ or high‐temperature annealing (70 °C or 150 °C) for the s‐MoOx layer, a well‐performing device is fabricated with an ideally interconnected, high‐efficiency morphology, or a device is fabricated in which the fullerene phase segregates near the hole extracting contact preventing efficient charge extraction. By probing the photocurrent dynamics of these two contrasting model systems as a function of excitation voltage and light intensity, the optoelectronic responses of the solar cells are correlated with the vertical phase composition of the polymer:fullerene active layer, which is known from dynamic secondary‐ion mass spectroscopy (DSIMS). Numerical simulations are used to verify and understand the experimental results. The result is a method to detect poor morphologies in operating organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号