首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The device performance of organic polymer:fullerene bulk heterojunction solar cells strongly depends on the interpenetrating network of the involved donor and acceptor materials in the active layer. Since morphology formation depends on the conditions of film preparation, the final morphology varies for different deposition methods. In order to understand and optimize industrial coating processes and, therefore, the performance of the solar cells produced, a deeper understanding of structure formation is important. In situ measurements of slot‐die printed polymer:fullerene active layers are presented that reveal insights into the evolution of the structure. Polymer crystallization and ordering is monitored by in situ grazing incidence wide angle X‐ray scattering (GIWAXS), and in situ grazing incidence small‐angle X‐ray scattering (GISAXS). The development of the morphology exhibits five stages independent of the drying conditions. Two growth rates are observed, an initial slow formation of poly(3‐hexylthiophene‐2,5‐diyl) crystallites in well‐aligned edge‐on orientation followed by a rapid crystal growth. By combining the GIWAXS and GISAXS measurements, a five‐stage growth and assembly process is found and described in detail along with a proposed model of the structural evolution. The findings are an important step in tailoring the assembly process.  相似文献   

2.
In this work, the detailed morphology studies of polymer poly(3‐hexylthiophene‐2,5‐diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all‐polymer solar cells. The in situ X‐ray scattering and optical interferometry and ex situ hard and soft X‐ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the ex situ grazing incidence X‐ray diffraction and soft X‐ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.  相似文献   

3.
The ratio of the donor and acceptor components in bulk heterojunction (BHJ) organic solar cells is a key parameter for achieving optimal power conversion efficiency (PCE). However, it has been recently found that a few BHJ blends have compositional tolerance and achieve high performance in a wide range of donor to acceptor ratios. For instance, the X2 :PC61BM system, where X2 is a molecular donor of intermediate dimensions, exhibits a PCE of 6.6%. Its PCE is relatively insensitive to the blend ratio over the range from 7:3 to 4:6. The effect of blend ratio of X2 /PC61BM on morphology and device performance is therefore systematically investigated by using the structural characterization techniques of energy‐filtered transmission energy microscopy (EF‐TEM), resonant soft X‐ray scattering (R‐SoXS) and grazing incidence wide angle X‐ray scattering (GIWAXS). Changes in blend ratio do not lead to obvious differences in morphology, as revealed by R‐SoXS and EF‐TEM. Rather, there is a smooth evolution of a connected structure with decreasing domain spacing from 8:2 to 6:4 blend ratios. Domain spacing remains constant from 6:4 to 4:6 blend ratios, which suggests the presence of continuous phases with proper domain size that may provide access for charge carriers to reach their corresponding electrodes.  相似文献   

4.
The complex intermixing morphology is critical for the performance of the nanostructured polymer:fullerene bulk heterojunction (BHJ) solar cells. Here, time resolved in situ grazing incidence X‐ray diffraction and grazing incidence small angle X‐ray scattering are used to track the structure formation of BHJ thin films formed from the donor polymer poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) with different fullerene derivative acceptors. The formation of stable bimolecular crystals through the intercalation of fullerene molecules between the side chains of polymer crystallites is investigated. Such systems exhibit more efficient exciton dissociation but lower photo‐conductance and faster decay of charges. On the basis of the experimental observations, intercalation obviously takes place before or with the formation of the crystalline polymer domains. It results in more stable structures whose volume remains constant upon further drying. Three distinct periods of drying are observed and the formation of unidimensional fullerene channels along the π‐stacking direction of polymer crystallites is confirmed.  相似文献   

5.
The performance of organic photovoltaic cells (OPVCs) shows a critical dependence on morphology and structure of the active layers. In small molecule donor/acceptor (D/A) cells fabrication parameters, like substrate temperature and evaporation rate, play a significant role for crystallization and roughening of the film. In particular, the fraction of mixed material at the interface between donor and acceptor is highly relevant for device performance. While an ideal planar heterojunction (PHJ) exhibits the smallest possible interface area resulting in suppressed recombination losses, mixed layers suffer strongly from recombination but show higher exciton dissociation efficiencies. In this study we investigate PHJ and planar‐mixed heterojunction (PM‐HJ) solar cells based on diindenoperylene (DIP) as donor and C60 as acceptor, fabricated under different growth conditions. Grazing incidence small angle X‐ray scattering (GISAXS), X‐ray reflectometry (XRR) and atomic force microscopy (AFM) are used to obtain detailed information about in‐ and out‐of‐plane structures and topography. In that way we find that surface and bulk domain distances are correlated in size for PHJs, while PM‐HJs show no correlation at all. The resulting solar cell characteristics are strongly affected by the morphology, as reorganizations in structure correlate with changes in the solar cell performance.  相似文献   

6.
A novel naphthalene diimide (NDI)‐based small molecule (BiNDI) is designed and synthesized by linking two NDI monomers via a vinyl donor moiety. The electronic structure of BiNDI is carefully investigated by ultraviolet photoelectron spectroscopy (UPS). Density functional theory (DFT) sheds further light on the molecular configuration and energy level distribution. Thin film transistors (TFT) based on BiNDI show a highest electron mobility of 0.365 cm2 V?1 s?1 in ambient atmosphere. Organic photovoltaics (OPVs) by using BiNDI as the acceptor show a highest power conversion efficency (PCE) of 2.41%, which is the best result for NDI‐based small molecular acceptors. Transmission electron microscopy (TEM), atomic force microscopy (AFM), grazing incidence wide‐angle X‐ray diffraction (GIXD), and X‐ray photo­electron spectroscopy (XPS) characterization to understand the morphology and structure order of the bulk heterojunction film are performed. It is found that small amount of 1,8‐diiodooctane (DIO) (i.e., 0.5%) in the blended film facilitates the crystallization of BiNDI into fibrillar crystals, which is beneficial for the improvement of device performance.  相似文献   

7.
Bulk heterojunction (BHJ) nonfullerene organic solar cells prepared from sequentially deposited donor and acceptor layers (sq‐BHJ) have recently been shown to be highly efficient, environmentally friendly, and compatible with large area and roll‐to‐roll fabrication. However, the related photophysics at donor‐acceptor interface and the vertical heterogeneity of donor‐acceptor distribution, critical for exciton dissociation and device performance, have been largely unexplored. Herein, steady‐state and time‐resolved optical and electrical techniques are employed to characterize the interfacial trap states. Correlating with the luminescent efficiency of interfacial states and its nonradiative recombination, interfacial trap states are characterized to be about 40% more populated in the sq‐BHJ devices than the as‐cast BHJ (c‐BHJ), which probably limits the device voltage output. Cross‐sectional energy‐dispersive X‐ray spectroscopy and ultraviolet photoemission spectroscopy depth profiling directly visualize the donor–acceptor vertical stratification with a precision of 1–2 nm. From the proposed “needle” model, the high exciton dissociation efficiency is rationalized. This study highlights the promise of sequential deposition to fabricate efficient solar cells, and points toward improving the voltage output and overall device performance via eliminating interfacial trap states.  相似文献   

8.
Nanofibers consisting of the bulk heterojunction organic photovoltaic (BHJ–OPV) electron donor–electron acceptor pair poly(3‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) are produced through a coaxial electrospinning process. While P3HT:PCBM blends are not directly electrospinnable, P3HT:PCBM‐containing fibers are produced in a coaxial fashion by utilizing polycaprolactone (PCL) as an electrospinnable sheath material. Pure P3HT:PCBM fibers are easily obtained after electrospinning by selectively removing the PCL sheath with cyclopentanone (average diameter 120 ± 30 nm). These fibers are then incorporated into the active layer of a BHJ–OPV device, which results in improved short‐circuit current densities, fill factors, and power‐conversion efficiencies (PCE) as compared to thin‐film devices of identical chemical composition. The best‐performing fiber‐based devices exhibit a PCE of 4.0%, while the best thin‐film devices have a PCE of 3.2%. This increase in device performance is attributed to the increased in‐plane alignment of P3HT polymer chains on the nanoscale, caused by the electrospun fibers, which leads to increased optical absorption and subsequent exciton generation. This methodology for improving device performance of BHJ–OPVs could also be implemented for other electron donor–electron acceptor systems, as nanofiber formation is largely independent of the PV material.  相似文献   

9.
Polymer aggregation plays a critical role in the miscibility of materials and the performance of all‐polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor–acceptor blends are studied, in which the number‐average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] ( PBDTT‐FTTE ) and a semicrystalline acceptor polymer, poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} ( P(NDI2OD‐T2) ) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in‐depth transmission electron microscopy, grazing incidence wide‐angle X‐ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse‐grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short‐circuit current density (Jsc) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.  相似文献   

10.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   

11.
Unlike universally applicable fullerene derivatives, current nonfullerene electron acceptors are rarely effective with more than one donor polymer in bulk heterojunction (BHJ) solar cells. A novel class of nonfullerene electron acceptors, bis(naphthalene imide)‐3,6‐diphenyl‐trans‐anthrazolines (BNIDPAs), that is applicable and yields efficient photovoltaic devices with multiple donor polymers, including a thiazolothiazole–dithienosilole copolymer (PSEHTT) and benzodithiophene copolymers (PBDTT‐FTTE and PTB7) is reported. Photovoltaic devices composed of the BNIDPA‐butyloctyl (BO) acceptor with PSEHTT, PBDTT‐FTTE, and PTB7, respectively, have power conversion efficiencies of 3.0%–3.1% with high open‐circuit voltages of ≈1.0 V. In contrast, BHJ devices composed of BNIDPA‐DT acceptor with larger 2‐decyltetradecyl chains and the same donor polymers have substantially reduced bulk electron mobility and reduced photovoltaic efficiencies of 1.3%–1.7%, which highlight the critical role of the size of alkyl chains appended onto nonfullerene electron acceptors. The present results provide a rare example of nonfullerene electron acceptors that are capable of pairing with multiple donor polymers to achieve efficient BHJ solar cells.  相似文献   

12.
To elucidate the details of film morphology/order evolution during spin‐coating, solvent and additive effects are systematically investigated for three representative organic solar cell (OSC) active layer materials using combined in situ grazing incidence wide angle x‐ray scattering (GIWAXS) and optical reflectance. Two archetypical semiconducting donor (p‐type) polymers, P3HT and PTB7, and semiconducting donor small‐molecule, p‐DTS(FBTTh2)2 are studied using three neat solvents (chloroform, chlorobenzene, 1,2‐dichlorobenzene) and four processing additives (1‐chloronaphthalene, diphenyl ether, 1,8‐diiodooctane, and 1,6‐diiodohexane). In situ GIWAXS identifies several trends: 1) for neat solvents, rapid crystallization occurs that risks kinetically locking the material into multiple crystal structures or crystalline orientations; and 2) for solvent + additive processed films, morphology evolution involves sequential transformations on timescales ranging from seconds to hours, with key divergences dependent on additive/semiconductor molecular interactions. When π‐planes dominate the additive/semiconductor interactions, both polymers and small molecule films follow similar evolutions, completing in 1–5 min. When side chains dominate the additive/semiconductor interactions, polymer film maturation times are up to 9 h, while initial crystallization times <10 s are observed for small‐molecule films. This study offers guiding information on OSC donor intermediate morphologies, evolution timescales, and divergent evolutions that can inform OSC manufacture.  相似文献   

13.
Organic photovoltaics (OPV) represent a thin‐film PV technology that offers attractive prospects for low‐cost and aesthetically appealing (colored, flexible, uniform, semitransparent) solar cells that are printable on large surfaces. In bulk heterojunction (BHJ) OPV devices, organic electron donor and acceptor molecules are intimately mixed within the photoactive layer. Since 2005, the power conversion efficiency of said devices has increased substantially due to insights in the underlying physical processes, device optimization, and chemical engineering of a vast number of novel light‐harvesting organic materials, either small molecules or conjugated polymers. As Nature itself has developed porphyrin chromophores for solar light to energy conversion, it seems reasonable to pursue artificial systems based on the same types of molecules. Porphyrins and their analogues have already been successfully implemented in certain device types, notably in dye‐sensitized solar cells, but they have remained largely unexplored in BHJ organic solar cells. Very recent successes do show, however, the strong (latent) prospects of porphyrinoid semiconductors as light‐harvesting and charge transporting materials in such devices. Here, an overview on the state‐of‐the‐art of porphyrin‐based solution‐processed BHJ OPV is provided and insights are given into the pathways to follow and hurdles to overcome toward further improvements of porphyrinic materials and devices.  相似文献   

14.
Low‐molecular‐weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite‐based materials. In situ time‐resolved grazing incidence wide‐angle X‐ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n‐i‐p heterojunction devices with MAPbI3 (MA = CH3NH3+) that display a performance that not only is enhanced by ≈ 25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”  相似文献   

15.
Understanding the morphology of polymer‐based bulk heterojunction (BHJ) solar cells is necessary to improve device efficiencies. Blends of a low‐bandgap silole‐containing conjugated polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b;2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (PSBTBT) with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) were investigated under different processing conditions. The surface morphologies and vertical segregation of the “As‐Spun”, “Pre‐Annealed”, and “Post‐Annealed” films were studied by scanning force microscopy, contact angle measurements, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, dynamic secondary ion mass spectrometry, and neutron reflectivity. The results showed that PSBTBT was enriched at the cathode interface in the “As‐Spun” films and thermal annealing increased the segregation of PSBTBT to the free surface, while thermal annealing after deposition of the cathode increased the PCBM concentration at the cathode interface. Grazing‐incidence X‐ray diffraction and small‐angle neutron scattering showed that the crystallization of PSBTBT and segregation of PCBM occurred during spin coating, and thermal annealing increased the ordering of PSBTBT and enhanced the segregation of the PCBM, forming domains ~10 nm in size, leading to an improvement in photovoltaic performance.  相似文献   

16.
Solution‐processable small molecule (SM) donors are promising alternatives to their polymer counterparts in bulk‐heterojunction (BHJ) solar cells. While SM donors with favorable spectral absorption, self‐assembly patterns, optimum thin‐film morphologies, and high carrier mobilities in optimized donor–acceptor blends are required to further BHJ device efficiencies, material structure governs each one of those attributes. As a result, the rational design of SM donors with gradually improved BHJ solar cell efficiencies must concurrently address: (i) bandgap tuning and optimization of spectral absorption (inherent to the SM main chain) and (ii) pendant‐group substitution promoting structural order and mediating morphological effects. In this paper, the rational pendant‐group substitution in benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SMs is shown to be an effective approach to narrowing the optical gap (Eopt) of the SM donors ( SM1 and SM2 ), without altering their propensity to order and form favorable thin‐film BHJ morphologies with PC71BM. Systematic device examinations show that power conversion efficiencies >8% and open‐circuit voltages (VOC) nearing 1 V can be achieved with the narrow‐gap SM donor analog ( SM2 , Eopt = 1.6 eV) and that charge transport in optimized BHJ solar cells proceeds with minimal, nearly trap‐free recombination. Detailed device simulations, light intensity dependence, and transient photocurrent analyses emphasize how carrier recombination impacts BHJ device performance upon optimization of active layer thickness and morphology.  相似文献   

17.
A nonfullerene acceptor (NFA) with acceptor–donor–acceptor (A–D–A) architecture, i‐IEICO‐2F, based on 4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene as an electron‐donating core and 2‐(6‐fluoro‐2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)‐propanedinitrile as electron‐withdrawing end groups, is designed and synthesized. i‐IEICO‐2F has a twist structure in the main conjugated chain, which causes blueshifted absorption and leads to harmonious absorption with a high bandgap donor. The bandgap of i‐IEICO‐2F compliments the bandgap of suitable wide bandgap donor polymers such as J52, leading to complete light absorption throughout the visible spectrum. Devices based on i‐IEICO‐2F exhibit optimized photovoltaic performance including an open‐circuit voltage of 0.93 V, a short‐circuit current density of 16.61 mA cm?2, and a fill factor of 73%, and result in a power conversion efficiency (PCE) of 11.28%. The i‐IEICO‐2F‐based devices reach PCEs of >11% without using any additives or post‐treatments. Devices are found to be thermally stable and maintain 44% of their initial PCE after 184.5 h of continuous thermal annealing (TA) treatment at 150 °C. Based on UV, atomic force microscopy (AFM), and grazing incidence wide angle X‐ray scattering (GIWAXS) results, i‐IEICO‐2F devices show almost identical morphology and molecular orientation throughout the TA treatment and excellent stability compared to other IEICO derivatives.  相似文献   

18.
“Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high‐efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main‐chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide‐bandgap polymer donor analogues composed of benzo[1,2‐b:4,5‐b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine‐ and ring‐substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.  相似文献   

19.
In bulk heterojunction (BHJ) polymeric organic solar cells (OSCs), the use of processing additives in the material formulation has emerged as a promising, cost‐effective, and widely applicable method for optimizing the phase separation between the donor (D) and acceptor (A) materials, thus increasing their efficiency. So far, however, there has been no systematic approach for identifying suitable processing additives for a given D:A system. A method based on the Hansen solubility parameters (HSPs) is proposed for guiding the selection of processing additives for a given D:A combination. The method is applied to the archetypical poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) system. The HSPs of these materials are determined and used to define a set of numerical criteria that need to be satisfied by a processing additive in order for it to be effective in realizing a higher efficiency OSC. Applying the selection criteria results in the identification of three novel processing additives. OSCs made of these formulations demonstrate an increase in their short‐circuit current density (JSC) and power conversion efficiency (PCE). These results demonstrate the efficiency of these novel processing additives and show that the HSPs represent a useful tool to determine and explore new types of processing additives for BHJ‐OSCs.  相似文献   

20.
The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution‐deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p‐DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS‐containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号