首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copolymers based on dithieno[3,2‐b:2′,3′‐d]silole (DTS) and dithienylthiazolo[5,4‐d]thiazole (TTz) are synthesized and tested in an all‐solution roll process for polymer solar cells (PSCs). Fabrication of polymer:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) solar cells is done on a previously reported compact coating/printing machine, which enables the preparation of PSCs that are directly scalable with full roll‐to‐roll processing. The positioning of the side‐chains on the thiophene units proves to be very significant in terms of solubility of the polymers and consequently has a major impact on the device yield and process control. The most successful processing is accomplished with the polymer, PDTSTTz‐4 , that has the side‐chains situated in the 4‐position on the thiophene units. Inverted PSCs based on PDTSTTz‐4 demonstrate high fill factors, up to 59%, even with active layer thicknesses well above 200 nm. Power conversion efficiencies of up to 3.5% can be reached with the roll‐coated PDTSTTz‐4 :PCBM solar cells that, together with good process control and high device yield, designate PDTSTTz‐4 as a convincing candidate for high‐throughput roll‐to‐roll production of PSCs.  相似文献   

2.
Semitransparent perovskite solar cells (st‐PSCs) have received remarkable interest in recent years because of their great potential in applications for solar window, tandem solar cells, and flexible photovoltaics. However, all reported st‐PSCs require expensive transparent conducting oxides (TCOs) or metal‐based thin films made by vacuum deposition, which is not cost effective for large‐scale fabrication: the cost of TCOs is estimated to occupy ≈75% of the manufacturing cost of PSCs. To address this critical challenge, this study reports a low‐temperature and vacuum‐free strategy for the fabrication of highly efficient TCO‐free st‐PSCs. The TCO‐free st‐PSC on glass exhibits 13.9% power conversion efficiency (PCE), and the four‐terminal tandem cell made with the st‐PSC top cell and c‐Si bottom cell shows an overall PCE of 19.2%. Due to the low processing temperature, the fabrication of flexible st‐PSCs is demonstrated on polyethylene terephthalate and polyimide, which show excellent stability under repeated bending or even crumbing.  相似文献   

3.
Improving device lifetime is one of the critical challenges for the practical use of metal halide perovskite solar cells (PSCs), wherein a reliable encapsulation is indispensable. Herein, based on an in‐depth understanding of the degradation mechanism for the PSCs, a solvent‐free and low‐temperature melting encapsulation technique, by employing low‐cost paraffin as the encapsulant that is compatible with perovskite absorbers, is demonstrated. The encapsulation strategy enables the full encapsulating operations to be undertaken under an ambient environment. It is found that the strategy not only removes residual oxygen and moisture to prevent the perovskite from phase segregation, but also suppresses the species volatilization to impede absorber decomposition, enabling a PSC devices with good thermal and moisture stability. As a result, the as‐encapsulated PSCs achieve a 1000 h operational lifetime for the encapsulated device at continuous maximum power point output under an ambient environment. This work paves the way for scalable and robust encapsulation strategy feasible to hybrid perovskite optoelectronics in an economic manner.  相似文献   

4.
5.
For the fabrication of deformable electronic devices, electrodes that are robust against repeated bending, twisting, stretching, folding, reversible plasticizing, and that maintain electrical conductivity, and so on, are required. Malleable and pliable silk‐derived electrodes are fabricated to enable the shape deformation of perovskite solar cells. Moisture‐driven silk‐derived electrodes show reversible plasticization with malleability and pliability, realizing diverse deformation from simple operations (including bending, folding, stretching, etc.) to complicated structures (including flower, bowknot, and paper crane). It is worth noting that the silk‐derived electrodes maintain electrical conductivity (15.8 Ω sq?1) compared to their initial value (15 Ω sq?1) even after suffering from reversible mechanical plasticization of complicated structures. Deformable perovskite solar cells are fabricated with the silk‐derived electrodes and achieve a power conversion efficiency of 10.40%. The devices maintain 92% of the initial efficiency after 1000 bends at a curvature radius of 2.5 mm. The power does not decline at 50% strain and keeps more than 60% of the initial value after stretching for 50 cycles. Malleability and pliability of silk‐derived electrodes benefit the realization of stretchable perovskite solar cells and deformable electronic devices.  相似文献   

6.
7.
8.
9.
Silver nanowire (AgNW)‐based transparent electrodes prepared via an all‐solution‐process are proposed as bottom electrodes in flexible perovskite solar cells (PVSCs). To enhance the chemical stability of AgNWs, a pinhole‐free amorphous aluminum doped zinc oxide (a‐AZO) protection layer is deposited on the AgNW network. Compared to its crystalline counterpart (c‐AZO), a‐AZO substantially improves the chemical stability of the AgNW network. For the first time, it is observed that inadequately protected AgNWs can evanesce via diffusion, whereas a‐AZO secures the integrity of AgNWs. When an optimally thick a‐AZO layer is used, the a‐AZO/AgNW/AZO composite electrode exhibits a transmittance of 88.6% at 550 nm and a sheet resistance of 11.86 Ω sq?1, which is comparable to that of commercial fluorine doped tin oxide. The PVSCs fabricated with a configuration of Au/spiro‐OMeTAD/CH3NH3PbI3/ZnO/AZO/AgNW/AZO on rigid and flexible substrates can achieve power conversion efficiencies (PCEs) of 13.93% and 11.23%, respectively. The PVSC with the a‐AZO/AgNW/AZO composite electrode retains 94% of its initial PCE after 400 bending iterations with a bending radius of 12.5 mm. The results clearly demonstrate the potential of AgNWs as bottom electrodes in flexible PVSCs, which can facilitate the commercialization and large‐scale deployment of PVSCs.  相似文献   

10.
11.
12.
13.
Evaporation is the most commonly used deposition method in the processing of back electrodes in polymer solar cells used in scientific studies. However, vacuum‐based methods such as evaporation are uneconomical in the upscaling of polymer solar cells as they are throughput limiting steps in an otherwise fast roll‐to‐roll production line. In this paper, the applicability of inkjet printing in the ambient processing of back electrodes in inverted polymer solar cells with the structure ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag is investigated. Furthermore, the limitation of screen printing, the commonly employed method in the ambient processing of back electrode, is demonstrated and discussed. Both inkjet printing and screen printing of back electrodes are studied for their impact on the photovoltaic properties of the polymer solar cells measured under 1000 Wm?2 AM1.5. Each ambient processing technique is compared with evaporation in the processing of back electrode. Laser beam induced current (LBIC) imaging is used to investigate the impact of the processing techniques on the current collection in the devices. We report that inkjet printing of back electrode delivers devices having photovoltaic performance comparable to devices with evaporated back electrodes. We further confirm that inkjet printing represent an efficient alternative to screen printing.  相似文献   

14.
15.
In this work, different from the commonly explored strategy of incorporating a smaller cation, MA+ and Cs+ into FAPbI3 lattice to improve efficiency and stability, it is revealed that the introduction of phenylethylammonium iodide (PEAI) into FAPbI3 perovksite to form mixed cation FAxPEA1–xPbI3 can effectively enhance both phase and ambient stability of FAPbI3 as well as the resulting performance of the derived devices. From our experimental and theoretical calculation results, it is proposed that the larger PEA cation is capable of assembling on both the lattice surface and grain boundaries to form quais‐3D perovskite structures. The surrounding of PEA+ ions at the crystal grain boundaries not only can serve as molecular locks to tighten FAPbI3 domains but also passivate the surface defects to improve both phase and moisture stablity. Consequently, a high‐performance (PCE:17.7%) and ambient stable FAPbI3 solar cell could be developed.  相似文献   

16.
Solution‐processed few‐layer MoS2 flakes are exploited as an active buffer layer in hybrid lead–halide perovskite solar cells (PSCs). Glass/FTO/compact‐TiO2/mesoporous‐TiO2/CH3NH3PbI3/MoS2/Spiro‐OMeTAD/Au solar cells are realized with the MoS2 flakes having a twofold function, acting both as a protective layer, by preventing the formation of shunt contacts between the perovskite and the Au electrode, and as a hole transport layer from the perovskite to the Spiro‐OMeTAD. As prepared PSC demonstrates a power conversion efficiency (η) of 13.3%, along with a higher lifetime stability over 550 h with respect to reference PSC without MoS2η/η = ?7% vs. Δη/η = ?34%). Large‐area PSCs (1.05 cm2 active area) are also fabricated to demonstrate the scalability of this approach, achieving η of 11.5%. Our results pave the way toward the implementation of MoS2 as a material able to boost the shelf life of large‐area perovskite solar cells in view of their commercialization.  相似文献   

17.
A new naphthalene diimide (NDI)‐based polymer with strong electron withdrawing dicyanothiophene (P(NDI2DT‐TTCN)) is developed as the electron transport layer (ETL) in place of the fullerene‐based ETL in inverted perovskite solar cells (Pero‐SCs). A combination of characterization techniques, including atomic force microscopy, scanning electron microscopy, grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, space‐charge‐limited current, electrochemical impedance spectroscopy, photoluminescence (PL), and time‐resolved PL decay, is used to demonstrate the interface phenomena between perovskite and P(NDI2DT‐TTCN) or [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). It is found that P(NDI2DT‐TTCN) not only improves the electron extraction ability but also prevents ambient condition interference by forming a hydrophobic ETL surface. In addition, P(NDI2DT‐TTCN) has excellent mechanical stability compared to PCBM in flexible Pero‐SCs. With these improved functionalities, the performance of devices based on P(NDI2DT‐TTCN) significantly outperform those based on PCBM from 14.3 to 17.0%, which is the highest photovoltaic performance with negligible hysteresis in the field of polymeric ETLs.  相似文献   

18.
All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented.  相似文献   

19.
Recently, organometal halide perovskite (OMHP)‐based solar cells have been regarded as one of the most promising technologies in the research field of renewable energy applications. Along with successful demonstrations of high power conversion efficiencies (PCEs), various characteristic strategies for fabricating functional OMHP‐based solar cells have been exploited to facilitate both their practical applicability and industrial suitability. As a part of such efforts, unconventional transparent conductive electrodes have been suggested based on the implementation of metal nanowires (MeNWs), which possess both high transparency and low sheet resistance, in order to replace traditional counterparts such as costly, limitedly‐flexible vacuum‐deposited conductive metal oxides. This allows for the facile fabrication of solution‐processable, low‐cost, highly flexible, high‐performance solar cell devices. In this review, the recent progress on OMHP solar cells integrated with MeNW‐network electrodes is investigated and the challenges associated with the integration of MeNW‐network electrodes are comprehensively addressed with the suggestion of possible solutions for resolving the critical issues.  相似文献   

20.
Inverted perovskite solar cells (PSCs) with low‐temperature processed hole transporting materials (HTMs) suffer from poor performance due to the inferior hole‐extraction capability at the HTM/perovskite interfaces. Here, molecules with controlled electron affinity enable a HTM with conductivity improved by more than ten times and a decreased energy gap between the Fermi level and the valence band from 0.60 to 0.24 eV, leading to the enhancement of hole‐extraction capacity by five times. As a result, the 3,6‐difluoro‐2,5,7,7,8,8‐hexacyanoquinodimethane molecules are used for the first time enhancing open‐circuit voltage (Voc) and fill factor (FF) of the PSCs, which enable rigid‐and flexible‐based inverted perovskite devices achieving highest power conversion efficiencies of 22.13% and 20.01%, respectively. This new method significantly enhances the Voc and FF of the PSCs, which can be widely combined with HTMs based on not only NiOx but also PTAA, PEDOTT:PSS, and CuSCN, providing a new way of realizing efficient inverted PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号