首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
As the rapid growth of the lithium‐ion battery (LIB) market raises concerns about limited lithium resources, rechargeable sodium‐ion batteries (SIBs) are attracting growing attention in the field of electrical energy storage due to the large abundance of sodium. Compared with the well‐developed commercial LIBs, all components of the SIB system, such as the electrode, electrolyte, binder, and separator, need further exploration before reaching a practical industrial application level. Drawing lessons from the LIB research, the SIB electrode materials are being extensively investigated, resulting in tremendous progress in recent years. In this article, the progress of the research on the development of electrode materials for SIBs is summarized. A variety of new electrode materials for SIBs, including transition‐metal oxides with a layered or tunnel structure, polyanionic compounds, and organic molecules, have been proposed and systematically investigated. Several promising materials with moderate energy density and ultra‐long cycling performance are demonstrated. Appropriate doping and/or surface treatment methodologies are developed to effectively promote the electrochemical properties. The challenges of and opportunities for exploiting satisfactory SIB electrode materials for practical applications are outlined.  相似文献   

2.
Grid‐scale energy storage systems (ESSs) that can connect to sustainable energy resources have received great attention in an effort to satisfy ever‐growing energy demands. Although recent advances in Li‐ion battery (LIB) technology have increased the energy density to a level applicable to grid‐scale ESSs, the high cost of Li and transition metals have led to a search for lower‐cost battery system alternatives. Based on the abundance and accessibility of Na and its similar electrochemistry to the well‐established LIB technology, Na‐ion batteries (NIBs) have attracted significant attention as an ideal candidate for grid‐scale ESSs. Since research on NIB chemistry resurged in 2010, various positive and negative electrode materials have been synthesized and evaluated for NIBs. Nonetheless, studies on NIB chemistry are still in their infancy compared with LIB technology, and further improvements are required in terms of energy, power density, and electrochemical stability for commercialization. Most recent progress on electrode materials for NIBs, including the discovery of new electrode materials and their Na storage mechanisms, is briefly reviewed. In addition, efforts to enhance the electrochemical properties of NIB electrode materials as well as the challenges and perspectives involving these materials are discussed.  相似文献   

3.
Layered sodium titanium oxide, Na2Ti3O7, is synthesized by a solid‐state reaction method as a potential anode for sodium‐ion batteries. Through optimization of the electrolyte and binder, the microsized Na2Ti3O7 electrode delivers a reversible capacity of 188 mA h g?1 in 1 M NaFSI/PC electrolyte at a current rate of 0.1C in a voltage range of 0.0–3.0 V, with sodium alginate as binder. The average Na storage voltage plateau is found at ca. 0.3 V vs. Na+/Na, in good agreement with a first‐principles prediction of 0.35 V. The Na storage properties in Na2Ti3O7 are investigated from thermodynamic and kinetic aspects. By reducing particle size, the nanosized Na2Ti3O7 exhibits much higher capacity, but still with unsatisfied cyclic properties. The solid‐state interphase layer on Na2Ti3O7 electrode is analyzed. A zero‐current overpotential related to thermodynamic factors is observed for both nano‐ and microsized Na2Ti3O7. The electronic structure, Na+ ion transport and conductivity are investigated by the combination of first‐principles calculation and electrochemical characterizations. On the basis of the vacancy‐hopping mechanism, a quasi‐3D energy favorable trajectory is proposed for Na2Ti3O7. The Na+ ions diffuse between the TiO6 octahedron layers with pretty low activation energy of 0.186 eV.  相似文献   

4.
5.
Cathode materials are usually active in the range of 2–4.3 V, but the decomposition of the electrolytic salt above 4 V versus Na+/Na is common. Arguably, the greatest concern is the formation of HF after the reaction of the salts with water molecules, which are present as an impurity in the electrolyte. This HF ceaselessly attacks the active materials and gradually causes the failure of the electrode via electric isolation of the active materials. In this study, a bioinspired β‐NaCaPO4 nanolayer is reported on a P2‐type layered Na2/3[Ni1/3Mn2/3]O2 cathode material. The coating layers successfully scavenge HF and H2O, and excellent capacity retention is achieved with the β‐NaCaPO4‐coated Na2/3[Ni1/3Mn2/3]O2 electrode. This retention is possible because a less acidic environment is produced in the Na cells during prolonged cycling. The intrinsic stability of the coating layer also assists in delaying the exothermic decomposition reaction of the desodiated electrodes. Formation and reaction mechanisms are suggested for the coating layers responsible for the excellent electrode performance. The suggested technology is promising for use with cathode materials in rechargeable sodium batteries to mitigate the effects of acidic conditions in Na cells.  相似文献   

6.
Sodium‐ion batteries (SIBs) are now being actively developed as low cost and sustainable alternatives to lithium‐ion batteries (LIBs) for large‐scale electric energy storage applications. In recent years, various inorganic and organic Na compounds, mostly mimicked from their Li counterparts, have been synthesized and tested for SIBs, and some of them indeed demonstrate comparable specific capacity to the presently developed LIB electrodes. However, the lack of suitable cathode materials is still a major obstacle to the commercial development of SIBs. Here, we present a brief review on the recent developments of SIB cathodes, with a focus on low cost and high energy density materials (> 450 Wh kg?1 vs Na) together with discussion of their Na‐storage mechanisms. The considerable differences in the structural requirements for Li‐ and Na‐storage reactions mean that it is not sufficient to design SIB cathode materials by simply mimicking LIB materials, and therefore great efforts are needed to discover new materials and reaction mechanisms to further develop variable cathodes for advanced SIB technology. Some directions for future research and possible strategies for building advanced cathode materials are also proposed here.  相似文献   

7.
Sodium‐ion batteries are promising for grid‐scale storage applications due to the natural abundance and low cost of sodium. However, few electrodes that can meet the requirements for practical applications are available today due to the limited routes to exploring new materials. Here, a new strategy is proposed through partially/fully substituting the redox couple of existing negative electrodes in their reduced forms to design the corresponding new positive electrode materials. The power of this strategy is demonstrated through the successful design of new tunnel‐type positive electrode materials of Na0.61[Mn0.61‐xFexTi0.39]O2, composed of non‐toxic and abundant elements: Na, Mn, Fe, Ti. In particular, the designed air‐stable Na0.61[Mn0.27Fe0.34Ti0.39]O2 shows a usable capacity of ≈90 mAh g?1, registering the highest value among the tunnel‐type oxides, and a high storage voltage of 3.56 V, corresponding to the Fe3+/Fe4+ redox couple realized for the first time in non‐layered oxides, which was confirmed by X‐ray absorption spectroscopy and Mössbauer spectroscopy. This new strategy would open an exciting route to explore electrode materials for rechargeable batteries.  相似文献   

8.
Searching for a new material to build the next‐generation rechargeable lithium‐ion batteries (LIBs) with high electrochemical performance is urgently required. Owing to the low‐cost, non‐toxicity, and high‐safety, the family of manganese oxide including the Na‐Mn‐O system is regarded as one of the most promising electrode materials for LIBs. Herein, a new strategy is carried out to prepare a highly porous and electrochemically active Na0.55Mn2O4·1.5H2O (SMOH) compound. As an anode material, the Na‐Mn‐O nanocrystal material dispersed within a carbon matrix manifests a high reversible capacity of 1015.5 mA h g?1 at a current density of 0.1 A g?1. Remarkably, a considerable capability of 546.8 mA h g?1 remains even after 2000 discharge/charge cycles at the higher current density of 4 A g?1, indicating a splendid cyclability. The exceptional electrochemical properties allow SMOH to be a promising anode material toward LIBs.  相似文献   

9.
Rechargeable ion batteries have contributed immensely to shaping the modern world and been seriously considered for the efficient storage and utilization of intermittent renewable energies. To fulfill their potential in the future market, superior battery performance of high capacity, great rate capability, and long lifespan is undoubtedly required. In the past decade, along with discovering new electrode materials, the focus has been shifting more and more toward rational electrode designs because the performance is intimately connected to the electrode architectures, particularly their designs at the nanoscale that can alleviate the reliance on the materials' intrinsic nature. The utilization of nanoarchitectured arrays in the design of electrodes has been proven to significantly improve the battery performance. A comprehensive summary of the structural features and fabrications of the nanoarchitectured array electrodes is provided, and some of the latest achievements in the area of both lithium‐ and sodium‐ion batteries are highlighted. Finally, future challenges and opportunities that would allow further development of such advanced electrode configuration are discussed.  相似文献   

10.
K‐ion batteries (KIBs) are promising for large‐scale energy storage owing to various advantages like the high abundance of potassium resources in the Earth's crust, high operational potentials, and high power due to fast diffusion of K+ ions. However, to realize the practical application of KIBs, electrode materials are needed with high operational voltage, good capacity, long cycle life, and low‐cost. This work reports a layered open framework material, K2[(VOHPO4)2(C2O4)], composited with reduced graphene oxide (rGO) as a 4 V positive electrode material for KIBs. The material is prepared by a simple precipitation reaction at room temperature. The material demonstrates reversible K‐extraction/insertion with conventional carbonate ester KPF6 solutions; however, with low specific capacity and low Coulombic efficiency. A high discharge capacity of >100 mAh g?1 with good cycling stability and higher Coulombic efficiency is achieved in a highly concentrated electrolyte, 7 mol kg?1 of potassium bis(fluorosulfonyl)amide (KFSA) in dimethoxyethane (DME) at 0.1 C rate. Due to the facile migration of K+ ions in the framework, the material exhibits excellent rate capability with a discharge capacity of 80 mAh g?1 at 10 C rate, and a good capacity retention of 67% after 500 cycles at 2 C rate.  相似文献   

11.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

12.
The recent proliferation of renewable energy generation offers mankind hope, with regard to combatting global climate change. However, reaping the full benefits of these renewable energy sources requires the ability to store and distribute any renewable energy generated in a cost‐effective, safe, and sustainable manner. As such, sodium‐ion batteries (NIBs) have been touted as an attractive storage technology due to their elemental abundance, promising electrochemical performance and environmentally benign nature. Moreover, new developments in sodium battery materials have enabled the adoption of high‐voltage and high‐capacity cathodes free of rare earth elements such as Li, Co, Ni, offering pathways for low‐cost NIBs that match their lithium counterparts in energy density while serving the needs for large‐scale grid energy storage. In this essay, a range of battery chemistries are discussed alongside their respective battery properties while keeping metrics for grid storage in mind. Matters regarding materials and full cell cost, supply chain and environmental sustainability are discussed, with emphasis on the need to eliminate several elements (Li, Ni, Co) from NIBs. Future directions for research are also discussed, along with potential strategies to overcome obstacles in battery safety and sustainable recyclability.  相似文献   

13.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

14.
Sodium‐ion batteries (SIBs) have attracted more and more attention for scalable electrical energy storage due to the abundance and wide distribution of Na resources. However, the anode still remains a great challenge for the application of SIBs. Here the production of uniform hard carbon microtubes (HCTs) made from natural cotton through one simple carbonization process and their application as an anode are reported. The study shows that the electrochemical performance of the HCTs is seriously affected by the carbonization temperature due to the difference in their microstructure and heteroatomic content. The HCTs carbonized at 1300 °C deliver the highest reversible capacity of 315 mAh g?1 and good rate capability due to their unique tubular structure. This contribution not only provides a new approach for the preparation of hard carbon materials with unique tubular microstructure using natural inspiration, but it also deepens the fundamental understanding of the sodium storage mechanism.  相似文献   

15.
The development of sodium‐ion batteries for large‐scale applications requires the synthesis of electrode materials with high capacity, high initial Coulombic efficiency (ICE), high rate performance, long cycle life, and low cost. A rational design of freestanding anode materials is reported for sodium‐ion batteries, consisting of molybdenum disulfide (MoS2) nanosheets aligned vertically on carbon paper derived from paper towel. The hierarchical structure enables sufficient electrode/electrolyte interaction and fast electron transportation. Meanwhile, the unique architecture can minimize the excessive interface between carbon and electrolyte, enabling high ICE. The as‐prepared MoS2@carbon paper composites as freestanding electrodes for sodium‐ion batteries can liberate the traditional electrode manufacturing procedure, thereby reducing the cost of sodium‐ion batteries. The freestanding MoS2@carbon paper electrode exhibits a high reversible capacity, high ICE, good cycling performance, and excellent rate capability. By exploiting in situ Raman spectroscopy, the reversibility of the phase transition from 2H‐MoS2 to 1T‐MoS2 is observed during the sodium‐ion intercalation/deintercalation process. This work is expected to inspire the development of advanced electrode materials for high‐performance sodium‐ion batteries.  相似文献   

16.
The current Na+ storage performance of carbon‐based materials is still hindered by the sluggish Na+ ion transfer kinetics and low capacity. Graphene and its derivatives have been widely investigated as electrode materials in energy storage and conversion systems. However, as anode materials for sodium‐ion batteries (SIBs), the severe π–π restacking of graphene sheets usually results in compact structure with a small interlayer distance and a long ion transfer distance, thus leading to low capacity and poor rate capability. Herein, partially reduced holey graphene oxide is prepared by simple H2O2 treatment and subsequent low temperature reduction of graphene oxide, leading to large interlayer distance (0.434 nm), fast ion transport, and larger Na+ storage space. The partially remaining oxygenous groups can also contribute to the capacity by redox reaction. As anode material for SIBs, the optimized electrode delivers high reversible capacity, high rate capability (365 and 131 mAh g?1 at 0.1 and 10 A g?1, respectively), and good cycling performance (163 mAh g?1 after 3000 cycles at a current density of 2 A g?1), which is among the best reported performances for carbon‐based SIB anodes.  相似文献   

17.
18.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

19.
Benefiting from the high abundance and low cost of sodium resource, rechargeable sodium‐ion batteries (SIBs) are regarded as promising candidates for large‐scale electrochemical energy storage and conversion. Due to the heavier mass and larger radius of Na+ than that of Li+, SIBs with inorganic electrode materials are currently plagued with low capacity and insufficient cycling life. In comparison, organic electrode materials display the advantages of structure designability, high capacity and low limitation of cationic radius. However, organic electrode materials also encounter issues such as high‐solubility in electrolyte and low conductivity. Here, recently reported organic electrode materials, which mainly include the reactions based on either carbon‐oxygen double bond or carbon‐nitrogen double bond, and doping reactions, are systematically reviewed. Furthermore, the design strategies of organic electrodes are comprehensively summarized. The working voltage is regulated through controlling the lowest unoccupied molecular orbital energies. The theoretical capacity can be enhanced by increasing the active groups. The dissolution is inhibited with elevating the intermolecular forces with proper molecular weight. The conductivity can be improved with extending conjugated structures. Future research into organic electrodes should focus on the development of full SIBs with aqueous/aprotic electrolytes and long cycling stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号