首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A scaling effort on perovskite solar cells is presented where the device manufacture is progressed onto flexible substrates using scalable techniques such as slot‐die roll coating under ambient conditions. The printing of the back electrode using both carbon and silver is essential to the scaling effort. Both normal and inverted device geometries are explored and it is found that the formation of the correct morphology for the perovskite layer depends heavily on the surface upon which it is coated and this has significant implications for manufacture. The time it takes to form the desired layer morphology falls in the range of 5–45 min depending on the perovskite precursor, where the former timescale is compatible with mass production and the latter is best suited for laboratory work. A significant loss in solar cell performance of around 50% is found when progressing to using a fully scalable fabrication process, which is comparable to what is observed for other printable solar cell technologies such as polymer solar cells. The power conversion efficiency (PCE) for devices processed using spin coating on indium tin oxide (ITO)‐glass with evaporated back electrode yields a PCE of 9.4%. The same device type and active area realized using slot‐die coating on flexible ITO‐polyethyleneterphthalate (PET) with a printed back electrode gives a PCE of 4.9%.  相似文献   

2.
Spray‐coating is a versatile coating technique that can be used to deposit functional films over large areas at speed. Here, spray‐coating is used to fabricate inverted perovskite solar cell devices in which all of the solution‐processible layers (PEDOT:PSS, perovskite, and PCBM) are deposited by ultrasonic spray‐casting in air. Using such techniques, all‐spray‐cast devices having a champion power conversion efficiency (PCE) of 9.9% are fabricated. Such performance compares favorably with reference devices spin‐cast under a nitrogen atmosphere that has a champion PCE of 12.8%. Losses in device efficiency are ascribed to lower surface coverage and reduced uniformity of the spray‐cast perovskite layer.  相似文献   

3.
Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance of f‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ) f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, the f‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, the f‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation.  相似文献   

4.
For the fabrication of deformable electronic devices, electrodes that are robust against repeated bending, twisting, stretching, folding, reversible plasticizing, and that maintain electrical conductivity, and so on, are required. Malleable and pliable silk‐derived electrodes are fabricated to enable the shape deformation of perovskite solar cells. Moisture‐driven silk‐derived electrodes show reversible plasticization with malleability and pliability, realizing diverse deformation from simple operations (including bending, folding, stretching, etc.) to complicated structures (including flower, bowknot, and paper crane). It is worth noting that the silk‐derived electrodes maintain electrical conductivity (15.8 Ω sq?1) compared to their initial value (15 Ω sq?1) even after suffering from reversible mechanical plasticization of complicated structures. Deformable perovskite solar cells are fabricated with the silk‐derived electrodes and achieve a power conversion efficiency of 10.40%. The devices maintain 92% of the initial efficiency after 1000 bends at a curvature radius of 2.5 mm. The power does not decline at 50% strain and keeps more than 60% of the initial value after stretching for 50 cycles. Malleability and pliability of silk‐derived electrodes benefit the realization of stretchable perovskite solar cells and deformable electronic devices.  相似文献   

5.
2D organic–inorganic hybrid Ruddlesden–Popper perovskites have emerged recently as candidates for the light‐absorbing layer in solar cell technology due largely to their impressive operational stability compared with their 3D‐perovskite counterparts. The methods reported to date for the preparation of efficient 2D perovksite layers for solar cells involve a nonscalable spin‐coating step. In this work, a facile, spin‐coating‐free, directly scalable drop‐cast method is reported for depositing precursor solutions that self‐assemble into highly oriented, uniform 2D‐perovskite films in air, yielding perovskite solar cells with power conversion efficiencies (PCE) of up to 14.9% (certified PCE of 14.33% ± 0.34 at 0.078 cm2). This is the highest PCE to date for a solar cell with 2D‐perovskite layers fabricated by nonspin‐coating method. The PCEs of the cells display no evidence of degradation after storage in a nitrogen glovebox for more than 5 months. 2D‐perovskite layer deposition using a slot‐die process is also investigated for the first time. Perovskite solar cells fabricated using batch slot‐die coating on a glass substrate or R2R slot‐die coating on a flexible substrate produced PCEs of 12.5% and 8.0%, respectively.  相似文献   

6.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   

7.
Organic–inorganic hybrid perovskite solar cells (PSCs) are currently attracting significant interest owing to their promising outdoor performance. However, the ability of indoor light harvesting of the perovskites and corresponding device performance are rarely reported. Here, the potential of planar PSCs in harvesting indoor light for low‐power consumption devices is investigated. Ionic liquid of 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF4) is employed as a modification layer of [6,6]‐phenyl‐C61‐butyric acid methyl ester) (PCBM) in the inverted PSCs. The incorporation of [BMIM]BF4 not only paves the interface contact between PCBM and electrode, but also facilitates the electron transport and extraction owing to the efficient passivation of the surface trap states. Moreover, [BMIM]BF4 with excellent thermal stability can act as a protective layer by preventing the erosion of moisture and oxygen into the perovskite layer. The resulting devices present a record indoor power conversion efficiency (PCE) of 35.20% under fluorescent lamps of 1000 lux, and an impressive PCE of 19.30% under 1 sun illumination. The finding in this work verifies the excellent indoor performance of PSCs to meet the requirements of eco‐friendly economy.  相似文献   

8.
Perovskite photovoltaics (PVs) have attracted attention because of their excellent power conversion efficiency (PCE). Critical issues related to large‐area PV performance, reliability, and lifetime need to be addressed. Here, it is shown that doped metal oxides can provide ideal electron selectivity, improved reliability, and stability for perovskite PVs. This study reports p‐i‐n perovskite PVs with device areas ranging from 0.09 cm2 to 0.5 cm2 incorporating a thick aluminum‐doped zinc oxide (AZO) electron selective contact with hysteresis‐free PCE of over 13% and high fill factor values in the range of 80%. AZO provides suitable energy levels for carrier selectivity, neutralizes the presence of pinholes, and provides intimate interfaces. Devices using AZO exhibit an average PCE increase of over 20% compared with the devices without AZO and maintain the high PCE for the larger area devices reported. Furthermore, the device stability of p‐i‐n perovskite solar cells under the ISOS‐D‐1 is enhanced when AZO is used, and maintains 100% of the initial PCE for over 1000 h of exposure when AZO/Au is used as the top electrode. The results indicate the importance of doped metal oxides as carrier selective contacts to achieve reliable and high‐performance long‐lived large‐area perovskite solar cells.  相似文献   

9.
Semitransparent perovskite solar cells (st‐PSCs) have received remarkable interest in recent years because of their great potential in applications for solar window, tandem solar cells, and flexible photovoltaics. However, all reported st‐PSCs require expensive transparent conducting oxides (TCOs) or metal‐based thin films made by vacuum deposition, which is not cost effective for large‐scale fabrication: the cost of TCOs is estimated to occupy ≈75% of the manufacturing cost of PSCs. To address this critical challenge, this study reports a low‐temperature and vacuum‐free strategy for the fabrication of highly efficient TCO‐free st‐PSCs. The TCO‐free st‐PSC on glass exhibits 13.9% power conversion efficiency (PCE), and the four‐terminal tandem cell made with the st‐PSC top cell and c‐Si bottom cell shows an overall PCE of 19.2%. Due to the low processing temperature, the fabrication of flexible st‐PSCs is demonstrated on polyethylene terephthalate and polyimide, which show excellent stability under repeated bending or even crumbing.  相似文献   

10.
The presence of surface and grain boundary defects in organic–inorganic halide perovskite films can be detrimental to both the performance and operational stability of perovskite solar cells (PSCs). Here, the effect of chloride additives is studied on the bulk and surface defects of the mixed cation and halide PSCs. It is found that using an antisolvent technique, the perovskite film is divided into two layers, i.e., a bottom layer with large grains and a thin capping layer with small grains. The addition of formamidinium chloride (FACl) into the precursor solution removes the small‐grained perovskite capping layer and suppresses the formation of bulk and surface defects, providing a perovskite film with enhanced crystallinity and large grain size of over 1 µm. Time‐resolved photoluminescence measurements show longer lifetimes for perovskite films modified by FACl and subsequently passivated by 1‐adamantylamine hydrochloride as compared to the reference sample. Impedance spectroscopy measurements show that these treatments reduce the recombination in the PSCs, leading to a champion device with power conversion efficiency (PCE) of 21.2%, an open circuit voltage of 1152 mV and negligible hysteresis. The Cl treated PSC also shows improved operational stability with only 12% PCE loss after 700 h under continuous illumination.  相似文献   

11.
Perovskite solar cells (PSCs) have recently experienced a rapid rise in power conversion efficiency (PCE), but the prevailing PSCs with conventional mesoscopic or planar device architectures still contain nonideal perovskite/hole‐transporting‐layer (HTL) interfaces, limiting further enhancement in PCE and device stability. In this work, CsPbBr3 perovskite nanowires are employed for modifying the surface electronic states of bulk perovskite thin films, forming compositionally‐graded heterojunction at the perovskite/HTL interface of PSCs. The nanowire morphology is found to be key to achieving lateral homogeneity in the perovskite film surface states resulting in a near‐ideal graded heterojunction. The hidden role of such lateral homogeneity on the performance of graded‐heterojunction PSCs is revealed for the first time. The resulting PSCs show high PCE up to 21.4%, as well as high operational stability, which is superior to control PSCs fabricated without CsPbBr3‐nanocrystals modification and with CsPbBr3‐nanocubes modification. This study demonstrates the promise of controlled hybridization of perovskite nanowires and bulk thin films for more efficient and stable PSCs.  相似文献   

12.
High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (PCE) insensitive to film thickness beyond 600 nm. The main reason lies in more serious recombination of the thick perovskite layer compared to the thin layer. Herein, this challenge is addressed by a simple hot casting method to formulate high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. It is found that increasing the temperature to 70 °C can dramatically increase the film thickness and enlarge the perovskite crystal, therefore boost the efficiency from ≈16% to ≈19%. Notably, a record PCE of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. The PCE remains steady around 19% when modifying the perovskite layer from 700 to 1150 nm. Moreover, these thick‐film PVSCs show good stability with 80% of its initial efficiency after 30 d in air with a humidity of 50%. Overall, this simple yet effective method has a great potential in the mass manufacture of PVSCs.  相似文献   

13.
Rapid improvement in photoconversion efficiency (PCE) of solution processable organometallic hybrid halide based perovskite solar cells (PSCs) have taken the photovoltaic (PV) community with a surprise and has extended their application in other electronic devices such as light emitting diodes, photo detectors and batteries. Together with efforts to push the PCE of PSCs to record values >22% – now at par with that of crystalline silicon solar cells – origin of their PV action and underlying physical processes are also deeply investigated worldwide in diverse device configurations. A typical PSC consists of a perovskite film sandwiched between an electron and a hole selective contact thereby creating ESC/perovskite and perovskite/HSC interfaces, respectively. The selective contacts and their interfaces determine properties of perovskite layer and also control the performance, origin of PV action, open circuit voltage, device stability, and hysteresis in PSCs. Herein, we define ideal charge selective contacts, and provide an overview on how the choice of interfacing materials impacts charge accumulation, transport, transfer/recombination, band‐alignment, and electrical stability in PSCs. We then discuss device related considerations such as morphology of the selective contacts (planar or mesoporous), energetics and electrical properties (insulating and conducting), and its chemical properties (organic vs inorganic). Finally, the outlook highlights key challenges and future directions for a commercially viable perovskite based PV technology.  相似文献   

14.
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.  相似文献   

15.
To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of contacts, the electron and hole transport layers, charge generation, drift and diffusion of charge carriers and recombination. The simulation to the experimental data of vacuum‐deposited CH3NH3PbI3 solar cells over multiple thicknesses has been fit and the device behavior under different operating conditions has been studied to delineate the influence of the external bias, charge‐carrier mobilities, energetic barriers for charge injection/extraction and, different recombination channels on the solar cell performance. By doing so, a unique set of material parameters and physical processes that describe these solar cells is identified. Trap‐assisted recombination at material interfaces is the dominant recombination channel limiting device performance and passivation of traps increases the power conversion efficiency (PCE) of these devices by 40%. Finally, guidelines to increase their performance have been issued and it is shown that a PCE beyond 25% is within reach.  相似文献   

16.
Light management holds great promise of realizing high‐performance perovskite solar cells by improving the sunlight absorption with lower recombination current and thus higher power conversion efficiency (PCE). Here, a convenient and scalable light trapping scheme is demonstrated by incorporating bioinspired moth‐eye nanostructures into the metal back electrode via soft imprinting technique to enhance the light harvesting in organic–inorganic lead halide perovskite solar cells. Compared to the flat reference cell with a methylammonium lead halide perovskite (CH3NH3PbI3?x Clx ) absorber, 14.3% of short‐circuit current improvement is achieved for the patterned devices with moth‐eye nanostructures, yielding an increased PCE up to 16.31% without sacrificing the open‐circuit voltage and fill factor. The experimental and theoretical characterizations verify that the cell performance enhancement is mainly ascribed by the broadband polarization‐insensitive light scattering and surface plasmonic effects due to the patterned metal back electrode. It is noteworthy that this light trapping strategy is fully compatible with solution‐processed perovskite solar cells and opens up many opportunities toward the future photovoltaic applications.  相似文献   

17.
Perovskite solar cells have evolved to have compatible high efficiency and stability by employing mixed cation/halide type perovskite crystals as pinhole‐free large grain absorbers. The cesium (Cs)–formamidium–methylammonium triple cation‐based perovskite device fabricated in a glove box enables reproducible high‐voltage performance. This study explores the method to reproduce stable and high power conversion efficiency (PCE) of a triple cation perovskite prepared using a one‐step solution deposition and low‐temperature annealing fully conducted in controlled ambient humidity conditions. Optimizing the perovskite grain size by Cs concentration and solution processes, a route is created to obtain highly uniform, pinhole‐free large grain perovskite films that work with reproducible PCE up to 20.8% and high preservation stability without cell encapsulation for more than 18 weeks. This study further investigates the light intensity characteristics of open‐circuit voltage (Voc) of small (5 × 5 mm2, PCE > 20%) and large (10 × 10 mm2, PCE of 18%) devices. Intensity dependence of Voc shows an ideality factor in the range of 1.7‐1.9 for both devices, implying that the triple cation perovskite involves trap‐assisted recombination loss at the hetero junction interfaces that influences Voc. Despite relatively high ideality factor, perovskite device is capable of supplying high power conversion efficiency under low light intensity (0.01 Sun) whereas maintaining Voc over 0.9 V.  相似文献   

18.
Recently, considerable progress is achieved in lab prototype perovskite solar cells (PSCs); however, the stability of outdoor applications of PSCs remains a challenge due to the high sensitivity of perovskite material under moist and ultraviolet (UV) light conditions. In this work, the UV photostability of PSC devices is improved by incorporating a photon downshifting layer—SrAl2O4: Eu2+, Dy3+ (SAED)—prepared using the pulsed laser deposition approach. Light‐induced deep trap states in the photoactive layer are depressed, and UV light‐induced device degradation is inhibited after the SAED modification. Optimized power conversion efficiency (PCE) of 17.8% is obtained through the enhanced light harvesting and reduced carrier recombination provided by SAED. More importantly, a solar energy storage effect due to the long‐persistent luminescence of SAED is obtained after light illumination is turned off. The introduction of downconverting material with long‐persistent luminescence in PSCs not only represents a new strategy to improve PCE and light stability by photoconversion from UV to visible light but also provides a new paradigm for solar energy storage.  相似文献   

19.
Tandem solar cells are the next step in the photovoltaic (PV) evolution due to their higher power conversion efficiency (PCE) potential than currently dominating, but inherently limited, single‐junction solar cells. With the emergence of metal halide perovskite absorber materials, the fabrication of highly efficient tandem solar cells, at a reasonable cost, can significantly impact the future PV landscape. The perovskite‐based tandem solar cells have already shown that they can convert light more efficiently than their standalone sub‐cells. However, to reach PCEs over 30%, several challenges have to be overcome and the understanding of this fascinating technology has to be broadened. In this review, the main scientific and engineering challenges in the field are presented, alongside a discussion of the current status of three main perovskite tandem technologies: perovskite/silicon, perovskite/CIGS, and perovskite/perovskite tandem solar cells. A summary of the advanced structural, electrical, optical, radiative, and electronic characterization methods as well as simulations being utilized for perovskite‐based tandem solar cells is presented. The main findings are summarized and the strength of the techniques to overcome the challenges and gain deeper knowledge for further performance improvement is assessed. Finally, the PCE potential in different experimental and theoretical limits is compared with an aim to shed light on the path towards overcoming the 30% efficiency threshold for all of the three herein reviewed tandem technologies.  相似文献   

20.
Carbon‐based hole transport material (HTM)‐free perovskite solar cells (PSCs) have shown much promise for practical applications because of their high stability and low cost. However, the efficiencies of this kind of PSCs are still relatively low, especially for the simplest paintable carbon‐based PSCs, in comparison with the organic HTM‐based PSCs. This can be imputed to the perovskite deposition methods that are not very suitable for this kind of devices. A solvent engineering strategy based on two‐step sequential method is exploited to prepare a high‐quality perovskite layer for the paintable carbon‐based PSCs in which the solvent for CH3NH3I (MAI) solution at the second step is changed from isopropanol (IPA) to a mixed solvent of IPA/Cyclohexane (CYHEX). This mixed solvent not only accelerates the conversion of PbI2 to CH3NH3PbI3 but also suppresses the Ostwald ripening process resulting in a high‐quality perovskite layer, e.g., pure phase, even surface, and compact capping layer. The paintable carbon‐based PSCs fabricated from IPA/CYHEX solvent exhibits a considerable enhancement in photovoltaic performance and performance reproducibility in comparison with that from pure IPA, especially on fill factor (FF), owing mainly to the better contact of perovskite/carbon interface, lower trap density in perovskite, higher light absorption ability, and faster charge transport of perovskite layer. As a result, the highest power conversion efficiency (PCE) of 14.38% is obtained, which is a record value for carbon‐based HTM‐free PSCs. Furthermore, a PCE of as high as 10% is achieved for the large area device (1 cm2), also the highest of its kind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号