首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a sensitizer with a strong π‐conjugation system, a coadsorbent is needed to hinder dye aggregation. However, coadsorption always brings a decrease in dye coverage on the TiO2 surface. Organic ‘‘D–A–π–A’’ dyes, WS‐6 and WS‐11, are designed and synthesized based on the known WS‐2 material for coadsorbent‐free, dye‐sensitized solar cells (DSSCs). Compared with the traditional D–π–A structure, these D–A–π–A indoline dyes, with the additional incorporated acceptor unit of benzothiadiazole in the π‐conjugation, exhibit a broad photoresponse, high redox stability, and convenient energy‐level tuning. The attached n‐hexyl chains in both dyes are effective to suppress charge recombination, resulting in a decreased dark current and enhanced open‐circuit voltage. Electrochemical impedance spectroscopy studies indicate that both the resistance for charge recombination and the electron lifetime are increased after the introduction of alkyl chains to the dye molecules. Without deoxycholic acid coadsorption, the power‐conversion efficiency of WS‐6 (7.76%) on a 16 μm‐thick TiO2 film device is 45% higher than that of WS‐2 (5.31%) under the same conditions. The additional n‐hexylthiophene in WS‐11 extends the photoresponse to a panchromatic spectrum but causes a low incident photon‐to‐current conversion efficiency.  相似文献   

2.
Solution‐processable small molecules are significant for producing high‐performance bulk heterojunction organic solar cells (OSCs). Shortening alkyl chains, while ensuring proper miscibility with fullerene, enables modulation of molecular stacking, which is an effective method for improving device performance. Here, the design and synthesis of two solution‐processable small molecules based on a conjugated backbone with a novel end‐capped acceptor (oxo–alkylated nitrile) using octyl and hexyl chains attached to π–bridge, and octyl and pentyl chains attached to the acceptor is reported. Shortening the length of the widely used octyl chains improves self‐assembly and device performance. Differential scanning calorimetry and grazing incidence X‐ray diffraction results demonstrated that the molecule substituted by shorter chains shows tighter molecular stacking and higher crystallinity in the mixture with 6,6‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and that the power conversion efficiency (PCE) of the OSC is as high as 5.6% with an open circuit voltage (Voc) of 0.87 V, a current density (Jsc) of 9.94 mA cm‐2, and an impressive filled factor (FF) of 65% in optimized devices. These findings provide valuable insights into the production of highly efficient solution‐processable small molecules for OSCs.  相似文献   

3.
The impact of alkyl side‐chain substituents on conjugated polymers on the photovoltaic properties of bulk heterojunction (BHJ) solar cells has been studied extensively, but their impact on small molecules has not received adequate attention. To reveal the effect of side chains, a series of star‐shaped molecules based on a triphenylamine (TPA) core, bithiophene, and dicyanovinyl units derivatized with various alkyl end‐capping groups of methyl, ethyl, hexyl and dodecyl is synthesiyed and studied to comprehensively investigate structure‐properties relationships. UV‐vis absorption and cyclic voltammetry data show that variations of alkyl chain length have little influence on the absorption and highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) levels. However, these seemingly negligible changes have a pronounced impact on the morphology of BHJ thin films as well as their charge carrier separation and transportation, which in turn influences the photovoltaic properties of these small‐molecule‐based BHJ devices. Solution‐processed organic solar cells (OSCs) based on the small molecule with the shortest methyl end groups exhibit high short circuit current (Jsc) and fill factor (FF), with an efficiency as high as 4.76% without any post‐treatments; these are among the highest reported for solution‐processed OSCs based on star‐shaped molecules.  相似文献   

4.
The interplay between nanomorphology and efficiency of polymer‐fullerene bulk‐heterojunction (BHJ) solar cells has been the subject of intense research, but the generality of these concepts for small‐molecule (SM) BHJs remains unclear. Here, the relation between performance; charge generation, recombination, and extraction dynamics; and nanomorphology achievable with two SM donors benzo[1,2‐b:4,5‐b]dithiophene‐pyrido[3,4‐b]‐pyrazine BDT(PPTh2)2, namely SM1 and SM2, differing by their side‐chains, are examined as a function of solution additive composition. The results show that the additive 1,8‐diiodooctane acts as a plasticizer in the blends, increases domain size, and promotes ordering/crystallinity. Surprisingly, the system with high domain purity (SM1) exhibits both poor exciton harvesting and severe charge trapping, alleviated only slightly with increased crystallinity. In contrast, the system consisting of mixed domains and lower crystallinity (SM2) shows both excellent exciton harvesting and low charge recombination losses. Importantly, the onset of large, pure crystallites in the latter (SM2) system reduces efficiency, pointing to possible differences in the ideal morphologies for SM‐based BHJ solar cells compared with polymer‐fullerene devices. In polymer‐based systems, tie chains between pure polymer crystals establish a continuous charge transport network, whereas SM‐based active layers may in some cases require mixed domains that enable both aggregation and charge percolation to the electrodes.  相似文献   

5.
Charge transport and recombination are studied for organic solar cells fabricated using blends of polymer poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (Si‐PCPDTBT) with [6,6]‐phenyl‐C61‐butyric acid methyl ester (mono‐PCBM) and the bis‐adduct analogue of mono‐PCBM (bis‐PCBM). The photocurrent of Si‐PCPDTBT:bis‐PCBM devices shows a strong square root dependence on the effective applied voltage. From the relationship between the photocurrent and the light intensity, we found that the square‐root dependence of the photocurrent is governed by the mobility‐lifetime (μτ) product of charge carriers while space‐charge field effects are insignificant. The fill factor (FF) and short circuit current density (Jsc) of bis‐PCBM solar cells show a considerable increase with temperature as compared to mono‐PCBM solar cells. SCLC analysis of single carrier devices proofs that the mobility of both electrons and holes is significantly lowered when replacing mono‐PCBM with bis‐PCBM. The increased recombination in Si‐PCPDTBT:bis‐PCBM solar cells is therefore attributed to the low carrier mobilities, as the transient photovoltage measurements show that the carrier lifetime of devices are not significantly altered by using bis‐PCBM instead of mono‐PCBM.  相似文献   

6.
Solution‐processable small molecule (SM) donors are promising alternatives to their polymer counterparts in bulk‐heterojunction (BHJ) solar cells. While SM donors with favorable spectral absorption, self‐assembly patterns, optimum thin‐film morphologies, and high carrier mobilities in optimized donor–acceptor blends are required to further BHJ device efficiencies, material structure governs each one of those attributes. As a result, the rational design of SM donors with gradually improved BHJ solar cell efficiencies must concurrently address: (i) bandgap tuning and optimization of spectral absorption (inherent to the SM main chain) and (ii) pendant‐group substitution promoting structural order and mediating morphological effects. In this paper, the rational pendant‐group substitution in benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SMs is shown to be an effective approach to narrowing the optical gap (Eopt) of the SM donors ( SM1 and SM2 ), without altering their propensity to order and form favorable thin‐film BHJ morphologies with PC71BM. Systematic device examinations show that power conversion efficiencies >8% and open‐circuit voltages (VOC) nearing 1 V can be achieved with the narrow‐gap SM donor analog ( SM2 , Eopt = 1.6 eV) and that charge transport in optimized BHJ solar cells proceeds with minimal, nearly trap‐free recombination. Detailed device simulations, light intensity dependence, and transient photocurrent analyses emphasize how carrier recombination impacts BHJ device performance upon optimization of active layer thickness and morphology.  相似文献   

7.
The elongation of π‐conjugated bridges between the donor (D) and the acceptor (A) represents a feasible strategy towards enhancement of light‐harvesting in both breadth and depth of organic D‐π‐A dyes suitable for nanocrystalline TiO2‐based dye‐sensitized solar cells (DSSCs). Here, a series of organic dyes with elongating conjugated bridges is synthesized and characterized. DSSC devices employing a cobalt (II/III) redox electrolyte are fabricated using these dyes as light‐harvesting sensitizers. Compared to a dye with the 3,4‐ethylenedioxythiophene (EDOT) linker ( G188 ), the three counterparts with further extended π‐bridges present gradually red‐shifted electronic absorption spectra and a persistent decrease in oxidation potential. The photocurrent action spectra show that the extension of π‐conjugated bridges decreases the open‐circuit photovoltage. The best performance is shown in G268 with a short‐circuit photocurrent density (Jsc) of 16.27 mA cm2, an open‐circuit photovoltage (Voc) of 0.83 V, and a fill factor (FF) of 0.67, corresponding to an overall conversion efficiency of 9.24%. Unexpectedly, G270, which has with the longest π‐bridge , showed the lowest Jsc, Voc, and efficiency.  相似文献   

8.
We report on the effects of screening of the electric field by doping‐induced mobile charges on photocurrent collection in operational organic solar cells. Charge transport and recombination were studied using double injection (DI) and charge extraction by linearly increasing voltage (CELIV) transient techniques in bulk‐heterojunction solar cells made from acceptor‐donor blends of poly(3‐n‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM). It is shown that the screening of the built‐in field in operational solar cells can be controlled by an external voltage while the influence on charge transport and recombination is measured. An analytical theory to extract the bimolecular recombination coefficient as a function of electric field from the injection current is also reported. The results demonstrate that the suppressed (non‐Langevin) bimolecular recombination rate and charge collection are not strongly affected by native doping levels in this materials combination. Hence, it is not necessary to reduce the level of doping further to improve the device performance of P3HT‐based solar cells.  相似文献   

9.
The synthesis and characterization of a series of novel small‐molecule hole‐transporting materials (HTMs) based on an anthra[1,2‐b:4,3‐b′:5,6‐b′′:8,7‐b′′′]tetrathiophene (ATT) core are reported. The new compounds follow an easy synthetic route and have no need of expensive purification steps. The novel HTMs are tested in perovskite solar cells and power conversion efficiencies (PCE) of up to 18.1% under 1 sun irradiation are measured. This value is comparable with the 17.8% efficiency obtained using 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene as a reference compound. Similarly, a significant quenching of the photoluminescence in the first nanosecond is observed, indicative of effective hole transfer. Additionally, the influence of introducing aliphatic alkyl chains acting as solubilizers on the device performance of the ATT molecules is investigated. Replacing the methoxy groups on the triarylamine sites by butoxy‐, hexoxy‐, or decoxy‐substituents greatly improves the solubility of the compounds without changing the energy levels, yet at the same time significantly decreasing the conductivity as well as the PCE, 17.3% for ATT‐OBu, 15.7% for ATT‐OHex, and 9.7% for ATT‐ODec.  相似文献   

10.
The emerging field of tandem polymer solar cells (TPSCs) enables a feasible approach to deal with the fundamental losses associated with single‐junction polymer solar cells (PSCs) and provides the opportunity to propel their overall performance. Additionally, the rational selection of appropriate subcell photoactive polymers with complementary absorption profiles and optimal thicknesses to achieve balanced photocurrent generation are very important issues which must be addressed in order to realize paramount device performance. Here, two side chain fluorinated wide‐bandgap π‐conjugated polymers P1 (2F) and P2 (4F) in TPSCs have been used. These π‐conjugated polymers have high absorption coefficients and deep highest occupied molecular orbitals which lead to high open‐circuit voltages (Voc) of 0.91 and 1.00 V, respectively. Using these π‐conjugated polymers, TPSCs have been successfully fabricated by combining P1 or P2 as front cells with PTB7‐Th as back cells. The optimized TPSCs deliver outstanding power conversion efficiencies of 11.42 and 10.05%, with high Voc's of 1.64 and 1.72 V, respectively. These results are analyzed by balance of charge mobilities, and optical and electrical modeling is combined to demonstrate simultaneous improvement in all photovoltaic parameters in TPSCs.  相似文献   

11.
Three small molecules with different substituents on bithienyl‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) units, BDTT‐TR (meta‐alkyl side chain), BDTT‐O‐TR (meta‐alkoxy), and BDTT‐S‐TR (meta‐alkylthio), are designed and synthesized for systematically elucidating their structure–property relationship in solution‐processed bulk heterojunction organic solar cells. Although all three molecules show similar molecular structures, thermal properties and optical band gaps, the introduction of meta‐alkylthio‐BDTT as the central unit in the molecular backbone substantially results in a higher absorption coefficient, slightly lower highest occupied molecular orbital level and significantly more efficient and balanced charge transport property. The bridging atom in the meta‐position to the side chain is found to impact the microstructure formation which is a subtle but decisive way: carrier recombination is suppressed due to a more balanced carrier mobility and BDTT based devices with the meta‐alkylthio side chain (BDTT‐S‐TR) show a higher power conversion efficiency (PCE of 9.20%) as compared to the meta‐alkoxy (PCE of 7.44% for BDTT‐TR) and meta‐alkyl spacer (PCE of 6.50% for BDTT‐O‐TR). Density functional density calculations suggest only small variations in the torsion angle of the side chains, but the nature of the side chain linkage is further found to impact the thermal as well as the photostability of corresponding devices. The aim is to provide comprehensive insight into fine‐tuning the structure–property interrelationship of the BDTT material class as a function of side chain engineering.  相似文献   

12.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   

13.
The charge generation and recombination dynamics in polymer/polymer blend solar cells composed of poly(3‐hexylthiophene) (P3HT, electron donor) and poly[2,7‐(9,9‐didodecylfluorene)‐alt‐5,5‐(4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothiadiazole)] (PF12TBT, electron acceptor) are studied by transient absorption measurements. In the unannealed blend film, charge carriers are efficiently generated from polymer excitons, but some of them recombine geminately. In the blend film annealed at 160 °C, on the other hand, the geminate recombination loss is suppressed and hence free carrier generation efficiency increases up to 74%. These findings suggest that P3HT and PF12TBT are intermixed within a few nanometers, resulting in impure PF12TBT and disordered P3HT domains. The geminate recombination is likely due to charge carriers generated on isolated polymer chains in the matrix of the other polymer and at the domain interface with disordered P3HT. The undesired charge loss by geminate recombination is reduced by both the purification of the PF12TBT‐rich domain and crystallization of the P3HT chains. These results show that efficient free carrier generation is not inherent to the polymer/fullerene domain interface, but is possible with polymer/polymer systems composed of crystalline donor and amorphous acceptor polymers, opening up a new potential method for the improvement of solar cell materials.  相似文献   

14.
The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cn on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.  相似文献   

15.
Length of the terminal alkyl chains at dicyanovinyl (DCV) groups of two dithienosilole (DTS) containing small molecules ( DTS(Oct)2‐(2T‐DCV‐Me)2 and DTS(Oct)2‐(2T‐DCV‐Hex)2 ) is investigated to evaluate how this affects the molecular solubility and blend morphology as well as their performance in bulk heterojunction organic solar cells (OSCs). While the DTS(Oct)2‐(2T‐DCV‐Me)2 (a solubility of 5 mg mL?1) system exhibits both high short circuit current density (J sc) and high fill factor, the DTS(Oct)2‐(2T‐DCV‐Hex)2 (a solubility of 24 mg mL?1) system in contrast suffers from a poor blend morphology as examined by atomic force morphology and grazing incidence X‐ray scattering measurements, which limit the photovoltaic properties. The charge generation, transport, and recombination dynamics associated with the limited device performance are investigated for both systems. Nongeminate recombination losses in DTS(Oct)2‐(2T‐DCV‐Hex)2 system are demonstrated to be significant by combining space charge limited current analysis and light intensity dependence of current–voltage characteristics in combination with photogenerated charge carrier extraction by linearly increasing voltage and transient photovoltage measurements. DTS(Oct)2‐(2T‐DCV‐Me)2 in contrast performs nearly ideal with no evidence of nongeminate recombination, space charge effects, or mobility limitation. These results demonstrate the importance of alkyl chain engineering for solution‐processed OSCs based on small molecules as an essential design tool to overcome transport limitations.  相似文献   

16.
Judicious choice of transport layer in organic–inorganic halide perovskite solar cells can be one of the essential parameters in photovoltaic design and fabrication techniques. This article reports the effect of optically generated dipoles in transport layer on the photovoltaic actions in active layer in perovskite solar cells with the architecture of indium tin oxide (ITO)/TiO x /CH3NH3PbI3–x Cl x /hole transport layer (HTL)/Au. Here, PTB7‐thieno[3,4‐b]thiophene‐alt‐benzodithiophene and P3HT‐poly(3‐hexylthiophene) are separately used as the HTL with significant and negligible photoinduced dipoles, respectively. Electric field‐induced photoluminescence quenching provides the first‐hand evidence to indicate that the photoinduced dipoles are partially aligned in the amorphous PTB7 layer under the influence of device built‐in field. By monitoring the recombination process through magneto‐photocurrent measurements under device operation condition, it is shown that the photoinduced dipoles in PTB7 layer can decrease the recombination of photogenerated carriers in the active layer in perovskite solar cells. Furthermore, the capacitance measurements suggest that the photoinduced dipoles in PTB7 can decrease charge accumulation at the electrode interface. Therefore, the studies indicate the important role of photoinduced dipoles in the HTL on charge recombination dynamics and provide a fundamental insight on how the polarization in transport layer can influence the device performance in perovskite solar cells.  相似文献   

17.
Achieving light harvesting is crucial for the efficiency of the solar cell. Constructing optical structures often can benefit from micro‐nanophotonic imprinting. Here, a simple and facile strategy is developed to introduce a large area grating structure into the perovskite‐active layer of a solar cell by utilizing commercial optical discs (CD‐R and DVD‐R) and achieve high photovoltaic performance. The constructed diffraction grating on the perovskite active layer realizes nanophotonic light trapping by diffraction and effectively suppresses carrier recombination. Compared to the pristine perovskite solar cells (PSCs), the diffraction‐grating perovskite devices with DVD obtain higher power conversion efficiency and photocurrent density, which are improved from 16.71% and 21.67 mA cm?2 to 19.71% and 23.11 mA cm?2. Moreover, the stability of the PSCs with diffraction‐grating‐structured perovskite active layer is greatly enhanced. The method can boost photonics merge into the remarkable perovskite materials for various applications.  相似文献   

18.
Nickel oxide based p‐type dye‐sensitized solar cells (DSCs) are limited in their efficiencies by poor fill factors (FFs). This work explores the origins of this limitation. Transient absorption spectroscopy identifies fast recombination between the injected hole and the dye anion under applied load as one of the predominant reasons for the poor FF of NiO‐based DSCs. A reduced hole injection efficiency, ηINJ, under applied load is found to play an equally important role. Both, the dye regeneration yield, ΦREG, and ηINJ decrease by approximately 40%–50% when moving from short‐ to open‐circuit conditions. Spectroelectrochemical measurements reveal that the electrochromic properties of NiO are a further limiting factor for the device performance leading to variable light‐harvesting efficiencies, ηLH, under applied load. The peak light‐harvesting efficiency decreases from 63% at short circuit to 57% at 600 mV reducing the FF of NiO DSCs by 5%. This effect is expected to be more pronounced for future devices with higher operating voltages. Incident, photon‐to‐electron conversion efficiency front–back analysis at applied bias is utilized to characterize the interfacial charge recombination. It is found that the recombination between the injected hole and the redox mediator has a surprisingly small effect on the FF.  相似文献   

19.
The gas chromatographic separation of enantiomers of 2‐Br carboxylic acid derivatives was studied on four different 6‐TBDMS‐2,3‐di‐O‐alkyl‐ β‐ and ‐γ‐CD stationary phases. The differences in thermodynamic data {ΔH and –ΔS} for the 15 structurally related racemates were evaluated. The influence of structure differences in the alkyl substituents covalently attached to the stereogenic carbon atom, as well as in the ester group of the homologous analytes, and the selectivity of modified β‐ and γ‐ cyclodextrin derivatives was studied in detail. The cyclodextrin cavity size, as well as elongation of alkyl substituents in positions 2 and 3 of 6‐TBDMS‐β‐CD, also affected their selectivity. The quality of enantiomeric separations is influenced mainly by alkyl chains of the ester group of the molecule and this appears to be independent of the CD stationary phase used. In some cases the separations occur as the result of external adsorption rather than inclusion complexations with the chiral selector. It was found that the temperature dependencies of the selectivity factor were nonlinear. Chirality 26:279–285, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号