首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although antimony sulfoiodide (SbSI) exhibits very interesting properties including high photoconductivity, ferroelectricity, and piezoelectricity, it is not applied to solar cells. Meanwhile, SbSI is predominantly prepared as a powder using a high‐temperature, high‐pressure system. Herein, the fabrication of solar cells utilizing SbSI as light harvesters is reported for the first time to the best of knowledge. SbSI is prepared by solution processing, followed by annealing under mild temperature conditions by a reaction between antimony trisulfide, which is deposited by chemical bath deposition on a mesoporous TiO2 electrode and antimony triiodide, under air at a low temperature (90 °C) without any external pressure. The solar cells fabricated using SbSI exhibit a power conversion efficiency of 3.05% under standard illumination conditions of 100 mW cm?2.  相似文献   

3.
A nanopatterning technique using nanostamps that provides a facile process to create a nature‐inspired moth‐eye structure achieving high transmittance in the visible range as well as a self‐cleaning effect is reported. Commercially available perfluoropolyether (PFPE) and NOA63 as the mold resin and second replica mold material, respectively, play an important role in fabricating the structure. The structure is found to increase transmittance up to 82% at 540 nm and contact angle up to 150°, representing superhydrophobicity even without the aid of a fluorinated self‐assembled monolayer (SAM) coating. The resulting solid‐state dye‐sensitized solar cells (ssDSSCs) with moth‐eye structures show enhancement of efficiency to 7.3% at 100 mW cm?2, which is among the highest values reported to date for N719 dye‐based ssDSSCs. This nature‐inspired nanopatterning process could be used for improving light harvesting in any type of photovoltaic cell, and it produces superhydrophobic surfaces, which in turn lead to self‐cleaning for long‐term stability.  相似文献   

4.
In this work, a new benzo[1,2‐b:4,5‐b′]dithiophene (BDT) building block containing alkylthio naphthyl as a side chain is designed and synthesized, and the resulting polymer, namely PBDTNS‐BDD, shows a lower HOMO energy level than that of its alkoxyl naphthyl counterpart PBDTNO‐BDD. An optimized photovoltaic device using PBDTNS‐BDD as a donor exhibits power conversion efficiencies (PCE) of 8.70% and 9.28% with the fullerene derivative PC71BM and the fullerene‐free small molecule ITIC as acceptors, respectively. Surprisingly, ternary blend devices based on PBDTNS‐BDD and two acceptors, namely PC71BM and ITIC, shows a PCE of 11.21%, which is much higher than that of PBDTNO‐BDD based ternary devices (7.85%) even under optimized conditions.  相似文献   

5.
6.
7.
Phosphorylation dynamics of LHCSR3 were investigated in Chlamydomonas reinhardtii by quantitative proteomics and genetic engineering. LHCSR3 protein expression and phosphorylation were induced in high light. Our data revealed synergistic and dynamic N‐terminal LHCSR3 phosphorylation. Phosphorylated and nonphosphorylated LHCSR3 associated with PSII‐LHCII supercomplexes. The phosphorylation status of LHCB4 was closely linked to the phosphorylation of multiple sites at the N‐terminus of LHCSR3, indicating that LHCSR3 phosphorylation may operate as a molecular switch modulating LHCB4 phosphorylation, which in turn is important for PSII‐LHCII disassembly. Notably, LHCSR3 phosphorylation diminished under prolonged high light, which coincided with onset of CEF. Hierarchical clustering of significantly altered proteins revealed similar expression profiles of LHCSR3, CRX, and FNR. This finding indicated the existence of a functional link between LHCSR3 protein abundance and phosphorylation, photosynthetic electron flow, and the oxidative stress response.  相似文献   

8.
Hole‐transporting materials (HTMs) are essential for enabling highly efficient perovskite solar cells (PVSCs) to extract and transport the hole carriers. Among numerous HTMs that are studied so far, the single‐spiro‐based compounds are the most frequently used HTMs for achieving highly efficient PVSCs. In fact, all the new spiro‐based HTMs reported so far that render PVSCs over 20% are based on spiro[fluorene‐9,9′‐xanthene] or spiro [cyclopenta [2,1‐b:3,4b′]dithiophene‐4,9′‐fluorene] cores; therefore, there is a need to diversify the design of their structures for further improving their function and performance. In addition, the fundamental understanding of structure–performance relationships for the spiro‐based HTMs is still lagging, for example, how molecular configuration, spiro numbers, and heteroatoms in spiro‐rings impact the efficacy of HTMs. To address these needs, two novel H‐shaped HTMs, G1 and G2 based on the di‐spiro‐rings as the cores are designed and synthesized. The combined good film‐forming properties, better interactions with perovskite, slightly deeper highest occupied molecular orbital, higher mobility and conductivity, as well as more efficient charge transfer for G2 help devices reach a very impressive power conversion efficiency of 20.2% and good stability. This is the first report of demonstrating the feasibility of using di‐spiro‐based HTMs for highly efficient PVSCs.  相似文献   

9.
10.
11.
In this report, highly efficient and humidity‐resistant perovskite solar cells (PSCs) using two new small molecule hole transporting materials (HTM) made from a cost‐effective precursor anthanthrone (ANT) dye, namely, 4,10‐bis(1,2‐dihydroacenaphthylen‐5‐yl)‐6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene (ACE‐ANT‐ACE) and 4,4′‐(6,12‐bis(octyloxy)‐6,12‐dihydronaphtho[7,8,1,2,3‐nopqr]tetraphene‐4,10‐diyl)bis(N,N‐bis(4‐methoxyphenyl)aniline) (TPA‐ANT‐TPA) are presented. The newly developed HTMs are systematically compared with the conventional 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamino)‐9,9′‐spirbiuorene (Spiro‐OMeTAD). ACE‐ANT‐ACE and TPA‐ANT‐TPA are used as a dopant‐free HTM in mesoscopic TiO2/CH3NH3PbI3/HTM solid‐state PSCs, and the performance as well as stability are compared with Spiro‐OMeTAD‐based PSCs. After extensive optimization of the metal oxide scaffold and device processing conditions, dopant‐free novel TPA‐ANT‐TPA HTM‐based PSC devices achieve a maximum power conversion efficiency (PCE) of 17.5% with negligible hysteresis. An impressive current of 21 mA cm?2 is also confirmed from photocurrent density with a higher fill factor of 0.79. The obtained PCE of 17.5% utilizing TPA‐ANT‐TPA is higher performance than the devices prepared using doped Spiro‐OMeTAD (16.8%) as hole transport layer at 1 sun condition. It is found that doping of LiTFSI salt increases hygroscopic characteristics in Spiro‐OMeTAD; this leads to the fast degradation of solar cells. While, solar cells prepared using undoped TPA‐ANT‐TPA show dewetting and improved stability. Additionally, the new HTMs form a fully homogeneous and completely covering thin film on the surface of the active light absorbing perovskite layers that acts as a protective coating for underlying perovskite films. This breakthrough paves the way for development of new inexpensive, more stable, and highly efficient ANT core based lower cost HTMs for cost‐effective, conventional, and printable PSCs.  相似文献   

12.
Chemical looping is a promising approach for improving the energy efficiency of many industrial chemical processes. However, a major limitation of modern chemical looping technologies is the lack of suitable active materials to mediate the involved subreactions. Identification of suitable materials has been historically limited by the scarcity of high‐temperature (>600 °C) thermochemical data to evaluate candidate materials. An accuratethermodynamic approach is demonstrated here to rapidly identify active materials which is applicable to a wide variety of chemical looping chemistries. Application of this analysis to chemical looping combustion correctly classifies 17/17 experimentally studied redox materials by their viability and identifies over 1300 promising yet previously unstudied active materials. This approach is further demonstrated by analyzing redox pairs for mediating a novel chemical looping process for producing pure SO2 from raw sulfur and air which could provide a more efficient and lower emission route to sulfuric acid. 12 promising redox materials for this process are identified, two of which are supported by previous experimental studies of their individual oxidation and reduction reactions. This approach provides the necessary foundation for connecting process design with high‐throughput material discovery to accelerate the innovation and development of a wide range of chemical looping technologies.  相似文献   

13.
14.
Periodically patterned zinc oxide nanorod (P‐ZnO NR) layers are directly prepared from a pre‐patterned ZnO seed layer using a polydimethylsiloxane (PDMS) elastomeric stamp and then applied in inverted organic photovoltaic devices (IOPVs). The IOPV is assembled with a hydrothermally grown zinc oxide nanorod patterns with a (100) preferential crystal orientation as an electron transport buffer layer (ETBL) and photoactive bilayer consisting of methacylate end‐functionalized poly(3‐hexylthiophene) (P3HT‐MA), phenyl‐C60‐butyric acid methyl ester (PC60BM) and indene‐C60 bis‐adduct (IC60BA). In te IOPVs, the P‐ZnO NR is found to induce efficient light harvesting and the photocrosslinkable P3HTs afford solution‐processed bilayer architecture in IOPVs to show improved device stability and performance (PCEmax= 5.95%), as the bilayered structure allowed direct exciton splitting, thus reducing the charge recombination.  相似文献   

15.
Stability is one of the key challenges for industrial scale commercialization of perovskite solar cells. In this work, a degradation mechanism that depends on materials and bias conditions of the device during light‐soaking is proposed. The observed degradation is linked to the additive 4‐tert‐butyl pyridine (tBP), crucial to the hole transport layer of most perovskite solar cells, and gold. This conclusion is reached through the statistical analysis of multiple compositional profiles of light‐soaked and nonlight‐soaked devices and by selective replacement of material layers of the device. Moreover, the rate of the light‐induced degradation is enhanced by operation at forward bias, which is required for power generation. Thus, this work stresses the need for the development of transport layers that do not require tBP, and to replace gold to produce high‐performing devices that are also stable under operating conditions.  相似文献   

16.
Organic solar cells based on ternary active layers can lead to higher power conversion efficiencies than corresponding binaries, and improved stability. The parameter space for optimization of multicomponent systems is considerably more complex than that of binaries, due to both, a larger number of parameters (e.g., two relative compositions rather than one) and intricate morphology–property correlations. Most experimental reports to date reasonably limit themselves to a relatively narrow subset of compositions (e.g., the 1:1 donor/s:acceptor/s trajectory). This work advances a methodology that allows exploration of a large fraction of the ternary phase space employing only a few (<10) samples. Each sample is produced by a designed sequential deposition of the constituent inks, and results in compositions gradients with ≈5000 points/sample that cover about 15%–25% of the phase space. These effective ternary libraries are then colocally imaged by a combination of photovoltaic techniques (laser and white light photocurrent maps) and spectroscopic techniques (Raman, photoluminescence, absorption). The generality of the methodology is demonstrated by investigating three ternary systems, namely PBDB‐T:ITIC:PC70BM, PTB7‐Th:ITIC:PC70BM, and P3HT:O‐IDFBR:O‐IDTBR. Complex performance‐structure landscapes through the ternary diagram as well as the emergence of several performance maxima are discovered.  相似文献   

17.
18.
A facile process to produce large‐area platinum (Pt) counter electrode platforms with well‐arrayed, mesh‐shaped nanopatterns using commercially available TiO2 paste and poly(dimethyl siloxane) (PDMS) nanostamps is presented. The process involves mesh‐shaped (200 nm × 200 nm) nanopatterning of a TiO2 scaffold onto a fluorine‐doped tin oxide (FTO) substrate, followed by Pt sputtering. The structure and morphology of the counter electrodes are characterized by a field emission scanning electron microscope (FE‐SEM) and an atomic force microscope (AFM). Solid‐state dye‐sensitized solar cells (ssDSSCs) fabricated with these mesh‐shaped Pt counter electrodes showed an efficiency of 7.0%. This is one of the highest efficiencies observed for N719 dye and is much higher than that of devices with non‐patterned, thermally deposited electrodes (5.4%) or non‐patterned, sputtering deposited electrodes (5.7%). This improvement is attributed to enhanced light harvesting and a greater surface area and has been confirmed by incident photon‐to current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) measurements.  相似文献   

19.
Copper (II) phthalocyanines (CuPcs) have attracted growing interest as promising hole‐transporting materials (HTMs) in perovskite solar cells (PSCs) due to their low‐cost and excellent stability. However, the most efficient PSCs using CuPc‐based HTMs reported thus far still rely on hygroscopic p‐type dopants, which notoriously deteriorate device stability. Herein, two new CuPc derivatives are designed, namely CuPc‐Bu and CuPc‐OBu, by molecular engineering of the non‐peripheral substituents of the Pc rings, and applied as dopant‐free HTMs in PSCs. Remarkably, a small structural change from butyl groups to butoxy groups in the substituents of the Pc rings significantly influences the molecular ordering and effectively improves the hole mobility and solar cell performance. As a consequence, PSCs based on dopant‐free CuPc‐OBu as HTMs deliver an impressive power conversion efficiency (PCE) of up to 17.6% under one sun illumination, which is considerably higher than that of devices with CuPc‐Bu (14.3%). Moreover, PSCs containing dopant‐free CuPc‐OBu HTMs show a markedly improved ambient stability when stored without encapsulation under ambient conditions with a relative humidity of 85% compared to devices containing doped Spiro‐OMeTAD. This work thus provides a fundamental strategy for the future design of cost‐effective and stable HTMs for PSCs and other optoelectronic devices.  相似文献   

20.
A new design for an energy‐harvesting electrochromic window (EH‐ECW) based on the fusion of two technologies, organic electrochromic windows and dye‐sensitized solar cells (DSSCs), is presented. Unlike other power‐generating smart windows, such as photoelectrochromic devices that are passive and only contain two states (i.e., a closed‐circuit colored state and an open‐circuit bleaching state), EH‐ECW allows active tuning of the transmittance by varying the applied potential and it functions as a photovoltaic cell based on a DSSC. The resulting device demonstrates a fast switching rate of 1 s in both the bleaching and coloring processes through the use of an electrochromic polymer as a counter electrode layer. To increase the transmittance of the device, a cobalt redox couple and a light‐colored, yet efficient, organic dye are used. The organic dye contains a polymeric structure that contributes to the high cyclic stability. The device exhibits a power conversion efficiency (PCE) of 4.5% (100 mW cm‐2) under AM 1.5 irradiation, a change in transmittance of 34% upon applied potential, and shows only 3% degradation in the PCE after 5000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号