首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the development of flexible electronics, flexible lithium ion batteries (LIBs) have received great attention. Previously, almost all reported flexible components had shortcomings related to poor mechanical flexibility, low energy density, and poor safety, which led to the failure of scalable applications. This study demonstrates a fully flexible lithium ion battery using LiCoO2 as the cathode, Li4Ti5O12 as the anode, and graphene film as the flexible current collector. The graphene oxide modified gel polymer electrolyte exhibits higher ionic conductivity than a conventional liquid electrolyte and improves the safety of the flexible battery. The optimum design of the flexible graphene battery exhibits super electrochemical performance, with a 2.3 V output voltage plateau and a satisfactory capacity of 143.0 mAh g?1 at 1 C. The mass energy density and power density are both ≈1.4 times higher than a standard electrode using metal foils as current collectors. No capacity loss is observed after 100 thousand cycles of mechanical bending. More importantly, even in the clipping state, this flexible gel polymer battery can still demonstrate a stable and safe electrochemical performance. This work may lead to a promising strategy of high‐performance scalable LIBs for the next‐generation flexible electronics.  相似文献   

2.
High‐performance flexible energy‐storage devices have great potential as power sources for wearable electronics. One major limitation to the realization of these applications is the lack of flexible electrodes with excellent mechanical and electrochemical properties. Currently employed batteries and supercapacitors are mainly based on electrodes that are not flexible enough for these purposes. Here, a three‐dimensionally interconnected hybrid hydrogel system based on carbon nanotube (CNT)‐conductive polymer network architecture is reported for high‐performance flexible lithium ion battery electrodes. Unlike previously reported conducting polymers (e.g., polyaniline, polypyrrole, polythiophene), which are mechanically fragile and incompatible with aqueous solution processing, this interpenetrating network of the CNT‐conducting polymer hydrogel exibits good mechanical properties, high conductivity, and facile ion transport, leading to facile electrode kinetics and high strain tolerance during electrode volume change. A high‐rate capability for TiO2 and high cycling stability for SiNP electrodes are reported. Typically, the flexible TiO2 electrodes achieved a capacity of 76 mAh g–1 in 40 s of charge/discharge and a high areal capacity of 2.2 mAh cm–2 can be obtained for flexible SiNP‐based electrodes at 0.1C rate. This simple yet efficient solution process is promising for the fabrication of a variety of high performance flexible electrodes.  相似文献   

3.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

4.
High‐capacity electrode materials play a vital role for high‐energy‐density lithium‐ion batteries. Silicon (Si) has been regarded as a promising anode material because of its outstanding theoretical capacity, but it suffers from an inherent volume expansion problem. Binders have demonstrated improvements in the electrochemical performance of Si anodes. Achieving ultrahigh‐areal‐capacity Si anodes with rational binder strategies remains a significant challenge. Herein, a binder‐lithiated strategy is proposed for ultrahigh‐areal‐capacity Si anodes. A hard/soft modulated trifunctional network binder (N‐P‐LiPN) is constructed by the partially lithiated hard polyacrylic acid as a framework and partially lithiated soft Nafion as a buffer via the hydrogen binding effect. N‐P‐LiPN has strong adhesion and mechanical properties to accommodate huge volume change of the Si anode. In addition, lithium‐ions are transferred via the lithiated groups of N‐P‐LiPN, which significantly enhances the ionic conductivity of the Si anode. Hence, the Si@N‐P‐LiPN electrodes achieve the highest initial Coulombic efficiency of 93.18% and a stable cycling performance for 500 cycles at 0.2 C. Specially, Si@N‐P‐LiPN electrodes demonstrate an ultrahigh‐areal‐capacity of 49.59 mAh cm?2. This work offers a new approach for inspiring the battery community to explore novel binders for next‐generation high‐energy‐density storage devices.  相似文献   

5.
Aqueous zinc batteries are considered as promising alternatives to lithium ion batteries owing to their low cost and high safety. However, the developments of state‐of‐the‐art zinc‐ion batteries (ZIB) and zinc–air batteries (ZAB) are limited by the unsatisfied capacities and poor cycling stabilities, respectively. It is of significance in utilizing the long‐cycle life of ZIB and high capacity of ZAB to exploit advanced energy storage systems. Herein, a bulk composite of graphene oxide and vanadium oxide (V5O12·6H2O) as cathode material for aqueous Zn batteries in a mild electrolyte is employed. The battery performance is demonstrated to arise from a combination of the reversible cations insertion/extraction in vanadium oxide and especially the electrochemical redox reactions on the surface functional groups of graphene oxide (named as pseudo‐Zn–air mechanism). Along with adjusting the hydroxyl content on the surface of graphene oxide, the specific capacity is significantly increased from 342 mAh g?1 to a maximum of 496 mAh g?1 at 100 mA g?1. The surface‐controlled kinetics occurring in the bulk composite ensure a high areal capacity of 10.6 mAh cm?2 at a mass loading of 26.5 mg cm?2, and a capacity retention of 84.7% over 10 000 cycles at a high current density of 10 A g?1.  相似文献   

6.
The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high‐performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple‐hollow‐shell structured V2O5 (THS‐V2O5) symmetric electrode material with a reversible capacity of >400 mAh g?1 between 1.5 and 4.0 V and >600 mAh g?1 between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS‐V2O5 electrodes assembled symmetric full lithium‐ion battery (LIB) exhibits a reversible capacity of ≈290 mAh g?1 between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple‐shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g?1 at 1000 mA g?1). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high‐performance symmetric battery electrode materials.  相似文献   

7.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

8.
Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high‐power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel‐like structure of a carbonized eggplant (EP) as a stable “host” for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as‐formed EP–LiF composite anode maintains ≈90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP–LiF offers much improved symmetric cell and full‐cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light‐weight high‐performance current collector, achieving an average Coulombic efficiency ≈99.1% in ether‐based electrolytes with 2.2 mAh cm?2 cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next‐generation high‐energy density batteries.  相似文献   

9.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

10.
The design and fabrication of high‐performance all‐plastic batteries is essentially important to achieve future flexible electronics. A major challenge in this field is the lack of stable and reliable soft organic electrodes with satisfactory performance. Here, a novel all‐plastic‐electrode based Li‐ion battery with a single flexible bi‐functional ladderized heterocyclic poly(quinone), (C6O2S2)n, as both cathode and anode is demonstrated. Benefiting from its unique ladder‐like quinone and dithioether structure, the as‐prepared polymer cathode shows a high energy density of 624 Wh kg?1 (vs lithium anode) and a stable battery life of 1000 cycles. Moreover, the as‐fabricated symmetric full‐battery delivers a large capacity of 249 mAh g?1 (at 20 mA g?1), a good capacity retention of 119 mAh g?1 after 250 cycles (at 1.0 A g?1) and a noteworthy energy density up to 276 Wh kg?1. The superior performance of poly(2,3‐dithiino‐1,4‐benzoquinone)‐based electrode rivals most of the state‐of‐the‐art demonstrations on organic‐based metal‐ion shuttling batteries. The study provides an effective strategy to develop stable bi‐functional electrode materials toward the next‐generation of high performance all‐plastic batteries.  相似文献   

11.
Printed batteries are an emerging solution for integrated energy storage using low‐cost, high accuracy fabrication techniques. While several printed batteries have been previously shown, few have designed a battery that can be incorporated into an integrated device. Specifically, a fully printed battery with a small active electrode area (<1 cm2) achieving high areal capacities (>10 mAh cm?2) at high current densities (1–10 mA cm?2) has not been demonstrated, which represents the minimum form‐factor and performance requirements for many low‐power device applications. This work addresses these challenges by investigating the scaling limits of a fully printed Zn–Ag2O battery and determining the electrochemical limitations for a mm2‐scale battery. Processed entirely in air, Zn–Ag2O batteries are well suited for integration in typical semiconductor packaging flows compared to lithium‐based chemistries. Printed cells with electrodes as small as 1 mm2 maintain steady operating voltages above (>1.4 V) at high current densities (1–12 mA cm?2) and achieve the highest reported areal capacity for a fully printed battery at 11 mAh cm?2. The findings represent the first demonstration of a small, packaged, fully printed Zn–Ag2O battery with high areal capacities at high current densities, a crucial step toward realizing chip‐scale energy storage for integrated electronic systems.  相似文献   

12.
Aqueous Ni/Fe batteries have great potential as flexible energy storage devices, owing to their low cost, low toxicity, high safety, and high energy density. However, the poor cycling stability has limited the widely expected application of Ni/Fe batteries, while the use of heavy metal substrates cannot meet the basic requirement for flexible devices. In this work, a flexible type of solid‐state Ni/Fe batteries with high energy and power densities is rationally developed using needle‐like Fe3O4 and flake‐like NiO directly grown on carbon cloth/carbon nanofiber (CC–CF) matrix as the anode and cathode, respectively. The hierarchical CC–CF substrate with high electric conductivity and good flexibility serves as an ideal support for guest active materials of nanocrystalline Fe3O4 and NiO, which can effectively buffer the volume change giving rise to good cycling ability. By utilizing a gel electrolyte, a robust and mechanically flexible quasi‐solid‐state Ni/Fe full cell can be assembled. It demonstrates optimal electrochemical performance, such as high energy density (5.2 mWh cm?3 and 94.5 Wh Kg?1), high power density (0.64 W cm?3 and 11.8 KW Kg?1), together with excellent cycling ability. This work provides an example of solid‐state alkaline battery with high electrochemical performance and mechanical flexibility, holding great potential for future flexible electronic devices.  相似文献   

13.
Lithium–sulfur batteries are appealing as high‐energy storage systems and hold great application prospects in wearable and portable electronics. However, severe shuttle effects, low sulfur conductivity, and especially poor electrode mechanical flexibility restrict sulfur utilization and loading for practical applications. Herein, high‐flux, flexible, electrospun fibrous membranes are developed, which succeed in integrating three functional units (cathode, interlayer, and separator) into an efficient composite. This structure helps to eliminate negative interface effects, and effectively drives synergistic boosts to polysulfide confinement, electron transfer, and lithium‐ion diffusion. It delivers a high initial capacity of 1501 mA h g?1 and a discharge capacity of 933 mA h g?1 after 400 cycles, with slow capacity attenuation (0.069% per cycle). Even under high sulfur loading (13.2 mg cm?2, electrolyte/sulfur ratio = 6 mL g?1) or in an alternative folded state, this three‐in‐one membrane still exhibits high areal capacity (11.4 mA h cm?2) and exceptional application performance (powering an array of over 30 light‐emitting diodes (LEDs)), highlighting its huge potential in high‐energy flexible devices.  相似文献   

14.
A rechargeable, stretchable battery composed of a liquid metal alloy (eutectic gallium‐indium; EGaIn) anode, a carbon paste, and MnO2 slurry cathode, an alkaline electrolytic hydrogel, and a soft elastomeric package is presented. The battery can stably cycle within a voltage range of 1.40–1.86 V at 1 mA cm?2 while being subject to 100% tensile strain. This is accomplished through a mechanism that involves reversible stripping and plating of gallium along with MnO2 chemical conversion. Moreover, a technique to increase the contact area between the EGaIn anode and hydrogel interface using CaCl2 additives, which reduces polarization and therefore reduces the effective current density, leading to higher discharge plateaus and lower charge plateaus. Relative to previous attempts at energy storage with liquid metal, the EGaIn‐MnO2 battery presented here shows an exceptional areal specific capacity (≈3.8 mAh cm?2) and robust, stable rechargeability over >100 charging cycles. The battery is also stable under bending, with negligible change in electrochemical properties when bent to a 2 mm radius of curvature. Batteries embedded within a wearable elastomeric sleeve can power a blue light‐emitting diode and strain‐sensing circuit. These demonstrations suggest that stretchable EGaIn‐MnO2 batteries are feasible for applications in wearable energy‐storage electronics.  相似文献   

15.
The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the energy density of lithium‐ion batteries (LIBs) without alternating the underlying chemistry. However, the progress toward thick, high areal capacity electrodes is severely limited by the sluggish electronic/ionic transport and easy deformability of conventional electrodes. A self‐supported ultrahigh‐capacity and fire‐resistant LiFePO4 (UCFR‐LFP)‐based nanocomposite cathode is demonstrated here. Benefiting from the structural and chemical uniqueness, the UCFR‐LFP electrodes demonstrate exceptional improvements in electrochemical performance and mass loading of active materials, and thermal stability. Notably, an ultrathick UCFR‐LFP electrode (1.35 mm) with remarkably high mass loading of active materials (108 mg cm?2) and areal capacity (16.4 mAh cm?2) is successfully achieved. Moreover, the 1D inorganic binder‐like ultralong hydroxyapatite nanowires (HAP NWs) enable the UCFR‐LFP electrode with excellent thermal stability (structural integrity up to 1000 °C and electrochemical activity up to 750 °C), fire‐resistance, and wide‐temperature operability. Such a unique UCFR‐LFP electrode offers a promising solution for next‐generation LIBs with high energy density, high safety, and wide operating‐temperature window.  相似文献   

16.
Lithium–sulfur (Li‐S) batteries are a promising next‐generation energy‐storage system, but the polysulfide shuttle and dendritic Li growth seriously hinder their commercial viability. Most of the previous studies have focused on only one of these two issues at a time. To address both the issues simultaneously, presented here is a highly conductive, noncarbon, 3D vanadium nitride (VN) nanowire array as an efficient host for both sulfur cathodes and lithium‐metal anodes. With fast electron and ion transport and high porosity and surface area, VN traps the soluble polysulfides, promotes the redox kinetics of sulfur cathodes, facilitates uniform nucleation/growth of lithium metal, and inhibits lithium dendrite growth at an unprecedented high current density of 10 mA cm?2 over 200 h of repeated plating/stripping. As a result, VN‐Li||VN‐S full cells constructed with VN as both an anode and cathode host with a negative to positive electrode capacity ratio of only ≈2 deliver remarkable electrochemical performance with a high Coulombic efficiency of ≈99.6% over 850 cycles at a high 4 C rate and a high areal capacity of 4.6 mA h cm?2. The strategy presented here offers a viable approach to realize high‐energy‐density, safe Li‐metal‐based batteries.  相似文献   

17.
The wide applications of rechargeable batteries require state‐of‐the‐art batteries that are sustainable (abundant resource), tolerant to high‐temperature operations, and excellent in delivering high capacity and long‐term cycling life. Due to the scarcity and uneven distribution of lithium, it is urgent to develop alternative rechargeable batteries. Herein, an organic compound, azobenzene‐4,4′‐dicarboxylic acid potassium salts (ADAPTS) is developed, with an azo group as the redox center for high performance potassium‐ion batteries (KIBs). The extended π‐conjugated structure in ADAPTS and surface reactions between ADAPTS and K‐ions enable the stable charge/discharge of K‐ion batteries even at high temperatures up to 60 °C. When operated at 50 °C, ADAPTS anode delivers a reversible capacity of 109 mAh g?1 at 1C for 400 cycles. A reversible capacity of 77 mAh g?1 is retained at 2C for 1000 cycles. At 60 °C, the ADAPTS‐based KIBs deliver a high capacity of 113 mAh g?1 with 81% capacity retention at 2C after 80 cycles. The exceptional electrochemical performance demonstrates that ADAPTS is a promising electrode material for high‐temperature KIBs.  相似文献   

18.
Trees have an abundant network of channels for the multiphase transport of water, ions, and nutrients. Recent studies have revealed that multiphase transport of ions, oxygen (O2) gas, and electrons also plays a fundamental role in lithium–oxygen (Li–O2) batteries. The similarity in transport behavior of both systems is the inspiration for the development of Li–O2 batteries from natural wood featuring noncompetitive and continuous individual pathways for ions, O2, and electrons. Using a delignification treatment and a subsequent carbon nanotube/Ru nanoparticle coating process, one is able to convert a rigid and electrically insulating wood membrane into a flexible and electrically conductive material. The resulting cell walls are comprised of cellulose nanofibers with abundant nanopores, which are ideal for Li+ ion transport, whereas the unperturbed wood lumina act as a pathway for O2 gas transport. The noncompetitive triple pathway design endows the wood‐based cathode with a low overpotential of 0.85 V at 100 mA g?1, a record‐high areal capacity of 67.2 mAh cm?2, a long cycling life of 220 cycles, and superior electrochemical and mechanical stability. The integration of such excellent electrochemical performance, outstanding mechanical flexibility, and renewable yet cost‐effective starting materials via a nature‐inspired design opens new opportunities for developing portable energy storage devices.  相似文献   

19.
High‐performance flexible batteries are promising energy storage devices for portable and wearable electronics. Currently, the major obstacle to develop flexible batteries is the shortage of flexible electrodes with excellent electrochemical performance. Another challenge is the limited progress in the flexible batteries beyond Li‐ion because of a safety concern for the Li‐based electrochemical system. In this work, a self‐supported tin sulfide (SnS) porous film (PF) is fabricated as a flexible cathode material in an Al‐ion battery, which delivers a high specific capacity of 406 mAh g?1. A capacity decay rate of 0.03% per cycle is achieved, indicating a good stability. The self‐supported and flexible SnS film also shows an outstanding electrochemical performance and stability during dynamic and static bending tests. In situ transmission electron microscopy demonstrates that the porous structure of SnS is beneficial for minimizing the volume expansion during charge/discharge. This leads to an improved structural stability and superior long‐term cyclability.  相似文献   

20.
To accommodate the decreasing lithium resource and ensure continuous development of energy storage industry, sodium‐based batteries are widely studied to inherit the next generation of energy storage devices. In this work, a novel Na super ionic conductor type KTi2(PO4)3/carbon nanocomposite is designed and fabricated as sodium storage electrode materials, which exhibits considerable reversible capacity (104 mAh g?1 under the rate of 1 C with flat voltage plateaus at ≈2.1 V), high‐rate cycling stability (74.2% capacity retention after 5000 cycles at 20 C), and ultrahigh rate capability (76 mAh g?1 at 100 C) in sodium ion batteries. Besides, the maximum ability for sodium storage is deeply excavated by further investigations about different voltage windows in half and full sodium ion cells. Meanwhile, as cathode material in sodium‐magnesium hybrid batteries, the KTi2(PO4)3/carbon nanocomposite also displays good electrochemical performances (63 mAh g?1 at the 230th cycle under the voltage window of 1.0–1.9 V). The results demonstrate that the KTi2(PO4)3/carbon nanocomposite is a promising electrode material for sodium ion storage, and lay theoretical foundations for the development of new type of batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号