首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Developing high‐voltage Mg‐compatible electrolytes (>3.0 V vs Mg) still remains to be the biggest R&D challenge in the area of nonaqueous rechargeable Mg batteries. Here, the key design concepts toward exploring new boron‐based Mg salts in a specific way of highlighting the implications of anions are proposed for the first time. The well‐defined boron‐centered anion‐based magnesium electrolyte (BCM electrolyte) is successfully presented by facile one‐step mixing of tris(2H‐hexafluoroisopropyl) borate and MgF2 in 1,2‐dimethoxyethane, in which the structures of anions have been thoroughly investigated via mass spectrometry accompanied by NMR and Raman spectra. The first all‐round practical BCM electrolyte fulfills all requirements of easy synthesis, high ionic conductivity, wide potential window (3.5 V vs Mg), compatibility with electrophilic sulfur, and simultaneously noncorrosivity to coin cell assemblies. When utilizing the BCM electrolyte, the fast‐kinetics selenium/carbon (Se/C) cathode achieves the best rate capability and the sulfur/carbon (S/C) cathode exhibits an impressive prolonged cycle life than previously published reports. The BCM electrolyte offers the most promising avenue to eliminate the major roadblocks on the way to high‐voltage Mg batteries and the design concepts can shed light on future exploration directions toward high‐voltage Mg‐compatible electrolytes.  相似文献   

3.
The development of all‐solid‐state lithium–sulfur batteries is hindered by the poor interfacial properties at solid electrolyte (SE)/electrode interfaces. The interface is modified by employing the highly concentrated solvate electrolyte, (MeCN)2?LiTFSI:TTE, as an interlayer material at the electrolyte/electrode interfaces. The incorporation of an interlayer significantly improves the cycling performance of solid‐state Li2S batteries compared to the bare counterpart, exhibiting a specific capacity of 760 mAh g?1 at cycle 100 (330 mAh g?1 for the bare cell). Electrochemical impedance spectroscopy shows that the interfacial resistance of the interlayer‐modified cell gradually decreases as a function of cycle number, while the impedance of the bare cell remains almost constant. Cross‐section scanning electron microscopy (SEM)/ energy dispersive X‐ray spectroscopy (EDS) measurements on the interlayer‐modified cell confirm the permeation of solvate into the cathode and the SE with electrochemical cycling, which is related to the decrease in cell impedance. In order to mimic the full permeation of the solvate across the entire cell, the solvate is directly mixed with the SE to form a “solvSEM” electrolyte. The hybrid Li2S cell using a solvSEM electrolyte exhibits superior cycling performance compared to the solid‐state cells, in terms of Li2S loading, Li2S utilization, and cycling stability. The improved performance is due to the favorable ionic contact at the battery interfaces.  相似文献   

4.
Lithium–sulfur (Li–S) batteries continue to be considered promising post‐lithium‐ion batteries owing to their high theoretical energy density. In pursuit of a Li–S cell with long‐term cyclability, most studies thus far have relied on using ether‐based electrolytes. However, their limited ability to dissolve polysulfides requires a high electrolyte‐to‐sulfur ratio, which impairs the achievable specific energy. Recently, the battery community found high donor electrolytes to be a potential solution to this shortcoming because their high solubility toward polysulfides enables a cell to operate under lean electrolyte conditions. Despite the increasing number of promising outcomes with high donor electrolytes, a critical hurdle related to stability of the lithium‐metal counter electrode needs to be overcome. This review provides an overview of recent efforts pertaining to high donor electrolytes in Li–S batteries and is intended to raise interest from within the community. Furthermore, based on analogous efforts in the lithium‐air battery field, strategies for protecting the lithium metal electrode are proposed. It is predicted that high donor electrolytes will be elevated to a higher status in the field of Li–S batteries, with the hope that either existing or upcoming strategies will, to a fair extent, mitigate the degradation of the lithium–metal interface.  相似文献   

5.
Development of electrolytes that simultaneously have high ionic conductivity, wide electrochemical window, and lithium dendrite suppression ability is urgently required for high‐energy lithium‐metal batteries (LMBs). Herein, an electrolyte is designed by adding a countersolvent into LiFSI/DMC (lithium bis(fluorosulfonyl)amide/dimethyl carbonate) electrolytes, forming countersolvent electrolytes, in which the countersolvent is immiscible with the salt but miscible with the carbonate solvents. The solvation structure and unique properties of the countersolvent electrolyte are investigated by combining electroanalytical technology with a Molecular Dynamics simulation. Introducing the countersolvent alters the coordination shell of Li+ cations and enhances the interaction between Li+ cations and FSI? anions, which leads to the formation of a LiF‐rich solid electrolyte interphase, arising from the preferential reduction of FSI? anions. Notably, the countersolvent electrolyte suppresses Li dendrites and enables stable cycling performance of a Li||NCM622 battery at a high cut‐off voltage of 4.6 V at both 25 and 60 °C. This study provides an avenue to understand and design electrolytes for high‐energy LMBs in the future.  相似文献   

6.
In lithium‐sulfur batteries, small S2–4 molecules show very different electrochemical responses from the traditional S8 material. Their exact lithiation/delitiation mechanism is not clear and how to select proper electrolytes for the S2–4 cathodes is also ambiguous. Here, S2–4 and S8/S2–4 composites with highly ordered microporous carbon as a confining matrix are fabricated and the electrode mechanism of the S2–4 cathode is investigated by comparing the electrochemical performances of the S2–4 and S2–4/S8 electrodes in various electrolytes combined with theoretical calculation. Experimental results show that the electrolyte and microstructure of carbon matrix play important roles in the electrochemical performance. If the micropores of carbon are small enough to prevent the penetration of the solvent molecules, the lithiation/delithiation for S2–4 occurs as a solid‐solid process. The irreversible chemically reactions between the polysulfudes and carbonates, and the dissolution of the polysulfides into the ethers can be effectively avoided due to the steric hindrance. The confined S2–4 show high adaptability to the electrolytes. The sulfur cathode based on this strategy exhibits excellent rate capability and cycling stability.  相似文献   

7.
Amongst post‐Li‐ion battery technologies, lithium–sulfur (Li–S) batteries have captured an immense interest as one of the most appealing devices from both the industrial and academia sectors. The replacement of conventional liquid electrolytes with solid polymer electrolytes (SPEs) enables not only a safer use of Li metal (Li°) anodes but also a flexible design in the shape of Li–S batteries. However, the practical implementation of SPEs‐based all‐solid‐state Li–S batteries (ASSLSBs) is largely hindered by the shuttling effect of the polysulfide intermediates and the formation of dendritic Li° during the battery operation. Herein, a fluorine‐free noble salt anion, tricyanomethanide [C(CN)3?, TCM?], is proposed as a Li‐ion conducting salt for ASSLSBs. Compared to the widely used perfluorinated anions {e.g., bis(trifluoromethanesulfonyl)imide anion, [N(SO2CF3)2)]?, TFSI?}, the LiTCM‐based electrolytes show decent ionic conductivity, good thermal stability, and sufficient anodic stability suiting the cell chemistry of ASSLSBs. In particular, the fluorine‐free solid electrolyte interphase layer originating from the decomposition of LiTCM exhibits a good mechanical integrity and Li‐ion conductivity, which allows the LiTCM‐based Li–S cells to be cycled with good rate capability and Coulombic efficiency. The LiTCM‐based electrolytes are believed to be the most promising candidates for building cost‐effective and high energy density ASSLSBs in the near future.  相似文献   

8.
Ionic liquids (ILs) are important electrolytes for applications in electrochemical devices. An emerging trend in ILs research is their hybridization with solid matrices, named ionogels. These ionogels can not only overcome the fluidity of ILs but also exhibit high mechanical strength of the solid matrix. Therefore, they show promise for applications in building lithium batteries. In this review, various types of solid matrices for confining ILs are summarized, including nonmetallic oxides, metal oxides, IL‐tethered nanoparticles, functionalized SiO2, metal–organic frameworks, and other structural materials. The synthetic strategies for ionogels are first documented, focusing on physical confinement and covalent grafting. Then, the structure, ionic conductivity, thermal stability, and electrochemical stability of ionogels are addressed in detail. Furthermore, the authors highlight the potential applications of state‐of‐art ionogels in lithium batteries. The authors conclude this review by outlining the remaining challenges as well as personal perspectives on this hot area of research.  相似文献   

9.
Lithium–sulfur batteries are attractive for automobile and grid applications due to their high theoretical energy density and the abundance of sulfur. Despite the significant progress in cathode development, lithium metal degradation and the polysulfide shuttle remain two critical challenges in the practical application of Li–S batteries. Development of advanced electrolytes has become a promising strategy to simultaneously suppress lithium dendrite formation and prevent polysulfide dissolution. Here, a new class of concentrated siloxane‐based electrolytes, demonstrating significantly improved performance over the widely investigated ether‐based electrolytes are reported in terms of stabilizing the sulfur cathode and Li metal anode as well as minimizing flammability. Through a combination of experimental and computational investigation, it is found that siloxane solvents can effectively regulate a hidden solvation‐ion‐exchange process in the concentrated electrolytes that results from the interactions between cations/anions (e.g., Li+, TFSI?, and S2?) and solvents. As a result, it could invoke a quasi‐solid‐solid lithiation and enable reversible Li plating/stripping and robust solid‐electrolyte interphase chemistries. The solvation‐ion‐exchange process in the concentrated electrolytes is a key factor in understanding and designing electrolytes for other high‐energy lithium metal batteries.  相似文献   

10.
Development of sulfur cathodes with 100% coulombic efficiency (CE) and good cycle stability remains challenging due to the polysulfide dissolution in electrolytes. Here, it is demonstrated that electrochemical reduction of lithium bis(fluorosulfonyl)imide (LiFSI) based electrolytes at a potential close to the sulfur cathode operation forms in situ protective coating on both cathode and anode surfaces. Quantum chemistry studies suggest the coating formation is initiated by the FSI(‐F) anion radicals generated during electrolyte reduction. Such a reduction additionally results in the formation of LiF. Accelerated cycle stability tests at 60 °C in a very simple electrolyte (LiFSI in dimethoxyethane with no additives) show an average CE approaching 100.0% over 1000 cycles with a capacity decay less than 0.013% per cycle after stabilization. Such a remarkable performance suggests a great promise of both an in situ formation of protective solid electrolyte coatings to avoid unwanted side reactions and the use of a LiFSI salt for this purpose.  相似文献   

11.
12.
The rechargeable Li–O2 battery has attracted much attention over the past decades owing to its overwhelming advantage in theoretical specific energy density compared to state‐of‐the‐art Li‐ion batteries. Practical application requires non‐aqueous Li–O2 batteries to stably obtain high reversible capacity, which highly depends on a suitable electrolyte system. Up to now, some critical challenges remain in developing desirable non‐aqueous electrolytes for Li–O2 batteries. Herein, we will review the current status and challenges in non‐aqueous liquid electrolytes, ionic liquid electrolytes and solid‐state electrolytes of Li–O2 batteries, as well as the perspectives on these issues and future development.  相似文献   

13.
Sodium‐ion batteries are considered as a promising technology for large‐scale energy storage applications, owing to their low cost. However, there are many challenges for developing sodium‐ion batteries with high capacity, long cycle life, and high‐rate capability. Herein, the development of high‐performance sodium‐ion batteries using ZnS nanospheres as anode material and an ether‐based electrolyte, which exhibit improved electrochemical performance over the pure alkyl carbonate electrolytes, is reported. ZnS nanospheres deliver a high specific capacity of 1000 mA h g?1 and high initial Columbic efficiency of 90%. Electrochemical testing and first‐principle calculations demonstrate that the ether‐based solvent can facilitate charge transport, reduce the energy barrier for sodium‐ion diffusion, and thus enhance electrochemical performances. Ex situ measurements (X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) mapping) reveal that ZnS nanospheres maintain structural integrity during the charge and discharge processes over 100 cycles. As anode material for sodium‐ion batteries, ZnS nanospheres deliver high reversible sodium storage capacity, high Coulombic efficiencies, and extended cycle life.  相似文献   

14.
Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g‐1 at 1C, 861 mAh g‐1 at 5C, and 663 mAh g‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries.  相似文献   

15.
16.
Sandwich‐type hybrid carbon nanosheets (SCNMM) consisting of graphene and micro/mesoporous carbon layer are fabricated via a double template method using graphene oxide as the shape‐directing agent and SiO2 nanoparticles as the mesoporous guide. The polypyrrole synthesized in situ on the graphene oxide sheets is used as a carbon precursor. The micro/mesoporous strcutures of the SCNMM are created by a carbonization process followed by HF solution etching and KOH treatment. Sulfur is impregnated into the hybrid carbon nanosheets to generate S@SCNMM composites for the cathode materials in Li‐S secondary batteries. The microstructures and electrochemical performance of the as‐prepared samples are investigated in detail. The hybrid carbon nanosheets, which have a thickness of about 10–25 nm, high surface area of 1588 m2 g?1, and broad pore size distribution of 0.8–6.0 nm, are highly interconnected to form a 3D hierarchical structure. The S@SCNMM sample with the sulfur content of 74 wt% exhibits excellent electrochemical performance, including large reversible capacity, good cycling stability and coulombic efficiency, and good rate capability, which is believed to be due to the structure of hybrid carbon materials with hierarchical porous structure, which have large specific surface area and pore volume.  相似文献   

17.
Benefiting from higher volumetric capacity, environmental friendliness and metallic dendrite‐free magnesium (Mg) anodes, rechargeable magnesium batteries (RMBs) are of great importance to the development of energy storage technology beyond lithium‐ion batteries (LIBs). However, their practical applications are still limited by the absence of suitable electrode materials, the sluggish kinetics of Mg2+ insertion/extraction and incompatibilities between electrodes and electrolytes. Herein, a systematic and insightful review of recent advances in RMBs, including intercalation‐based cathode materials and conversion reaction‐based compounds is presented. The relationship between microstructures with their electrochemical performances is comprehensively elucidated. In particular, anode materials are discussed beyond metallic Mg for RMBs. Furthermore, other Mg‐based battery systems are also summarized, including Mg–air batteries, Mg–sulfur batteries, and Mg–iodine batteries. This review provides a comprehensive understanding of Mg‐based energy storage technology and could offer new strategies for designing high‐performance rechargeable magnesium batteries.  相似文献   

18.
Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects.  相似文献   

19.
LiNixMnyCo1?x?yO2 (NMC) cathode materials with Ni ≥ 0.8 have attracted great interest for high energy‐density lithium‐ion batteries (LIBs) but their practical applications under high charge voltages (e.g., 4.4 V and above) still face significant challenges due to severe capacity fading by the unstable cathode/electrolyte interface. Here, an advanced electrolyte is developed that has a high oxidation potential over 4.9 V and enables NMC811‐based LIBs to achieve excellent cycling stability in 2.5–4.4 V at room temperature and 60 °C, good rate capabilities under fast charging and discharging up to 3C rate (1C = 2.8 mA cm?2), and superior low‐temperature discharge performance down to ?30 °C with a capacity retention of 85.6% at C/5 rate. It is also demonstrated that the electrode/electrolyte interfaces, not the electrolyte conductivity and viscosity, govern the LIB performance. This work sheds light on a very promising strategy to develop new electrolytes for fast‐charging high‐energy LIBs in a wide‐temperature range.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号