首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhanced power conversion efficiency (PCE) is reported in inverted polymer solar cells when an electron‐rich polymer nanolayer (poly(ethyleneimine) (PEI)) is placed on the surface of an electron‐collecting buffer layer (ZnO). The active layer is made with bulk heterojunction films of poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The thickness of the PEI nanolayer is controlled to be 2 nm to minimize its insulating effect, which is confirmed by X‐ray photoelectron spectroscopy and optical absorption measurements. The Kelvin probe and ultraviolet photoelectron spectroscopy measurements demonstrate that the enhanced PCE by introducing the PEI nanolayer is attributed to the lowered conduction band energy of the ZnO layer via the formation of an interfacial dipole layer at the interfaces between the ZnO layer and the PEI nanolayer. The PEI nanolayer also improves the surface roughness of the ZnO layer so that the device series resistance can be noticeably decreased. As a result, all solar cell parameters including short circuit current density, open circuit voltage, fill factor, and shunt resistance are improved, leading to the PCE increase up to ≈8.9%, which is close to the best PCE reported using conjugated polymer electrolyte films.  相似文献   

2.
The synthesis of single‐crystalline β‐CsPbI3 perovskite nanorods (NRs) using a colloidal process is reported, exhibiting their improved photostability under 45–55% humidity. The crystal structure of CsPbI3 NRs films is investigated using Rietveld refined X‐ray diffraction (XRD) patterns to determine crystallographic parameters and the phase transformation from orthorhombic (γ‐CsPbI3) to tetragonal (β‐CsPbI3) on annealing at 150 °C. Atomic resolution transmission electron microscopy images are utilized to determine the probable atomic distribution of Cs, Pb, and I atoms in a single β‐phase CsPbI3 NR, in agreement with the XRD structure and selected area electron diffraction pattern, indicating the growth of single crystalline β‐CsPbI3 NR. The calculation of the electronic band structure of tetragonal β‐CsPbI3 using density functional theory (DFT) reveals a direct transition with a lower band gap and a higher absorption coefficient in the solar spectrum, as compared to its γ‐phase. An air‐stable (45–55% humidity) inverted perovskite solar cell, employing β‐CsPbI3 NRs without any encapsulation, yields an efficiency of 7.3% with 78% enhancement over the γ‐phase, showing its potential for future low cost photovoltaic devices.  相似文献   

3.
In most current state‐of‐the‐art perovskite solar cells (PSCs), high‐temperature (≈500 °C)‐sintered metal oxides are employed as electron‐transporting layers (ETLs). To lower the device processing temperature, the development of low‐temperature‐processable ETL materials (such as solution‐processed ZnO) has received growing attention. However, thus far, the use of solution‐processed ZnO is limited because the reverse decomposition reaction that occurs at ZnO/perovskite interfaces significantly degrades the charge collection and stability of PSCs. In this work, the reverse decomposition reaction is successfully retarded by sulfur passivation of solution‐processed ZnO. The sulfur passivation of ZnO by a simple chemical means, efficiently reduces the oxygen‐deficient defects and surface oxygen‐containing groups, thus effectively preventing reverse decomposition reactions during and after formation of the perovskite active layers. Using the low‐temperature‐processed sulfur‐passivated ZnO (ZnO–S), perovskite layers with higher crystallinity and larger grain size are obtained, while the charge extraction at the ZnO/perovskite interface is significantly improved. As a result, the ZnO–S‐based PSCs achieve substantially improved power‐conversion‐efficiency (PCE) (19.65%) and long‐term air‐storage stability (90% retention after 40 d) compared with pristine ZnO‐based PSCs (16.51% and 1% retention after 40 d). Notably, the PCE achieved is the highest recorded (19.65%) for low‐temperature ZnO‐based PSCs.  相似文献   

4.
Herein, this study reports high‐efficiency, low‐temperature ZnO based planar perovskite solar cells (PSCs) with state‐of‐the‐art performance. They are achieved via a strategy that combines dual‐functional self‐assembled monolayer (SAM) modification of ZnO electron accepting layers (EALs) with sequential deposition of perovskite active layers. The SAMs, constructed from newly synthesized molecules with high dipole moments, act both as excellent surface wetting control layers and as electric dipole layers for ZnO‐EALs. The insertion of SAMs improves the quality of PbI2 layers and final perovskite layers during sequential deposition, while charge extraction is enhanced via electric dipole effects. Leveraged by SAM modification, our low‐temperature ZnO based PSCs achieve an unprecedentedly high power conversion efficiency of 18.82% with a VOC of 1.13 V, a JSC of 21.72 mA cm?2, and a FF of 0.76. The strategy used in this study can be further developed to produce additional performance enhancements or fabrication temperature reductions.  相似文献   

5.
The preparation of ZnO structured films designed to act as electron transport layers in efficient ZnO/perovskite CH3NH3PbI3/spirobifluorene (spiro‐OMeTAD) solid‐state solar cells by electrochemical deposition is reported. Well‐conducting ZnO layers are deposited in chloride medium and grown with tailored (nano)structures ranging from arrays of nanowires to a compact, well‐covering film. Moreover, the effect of a thin intermediate overlayer of ZnO conformally electrodeposited in nitrate medium and with a low n‐type doping (i‐ZnO) is discussed. The results show higher power conversion efficiencies for the nanostructured oxide layers compared to the dense one. Moreover, the presence of the i‐ZnO layer is shown to markedly improve the cell short‐circuit current and the open‐circuit voltage due to charge recombination reduction. For the best cells, the active layers efficiently absorb light over a large spectral range from near‐UV to near infrared region and exhibit excellent charge collection efficiencies. Solar cells based on an optimized design generate a very large photocurrent and the power conversion efficiency at one sun is as high as 10.28%.  相似文献   

6.
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer.  相似文献   

7.
The recent surge in efficiency and progress of organohalide perovskite solar cells (PSCs) has been significant. The PSC performance is significantly influenced by nanostructuring as this varies the intrinsic optical, electrical, and electrochemical properties. Diverse TiO2 electron transport layers (ETLs) are solvothermally grown on the transparent conducting oxide substrate with different dimensionalities, 0D nanoparticles (TNP), 1D nanowires (TNW) to 2D nanosheets (TNS), by varying the organic solvent used. These layers feature enhanced optical transparency (≈2%–5% transmittance improvement compared to pristine fluorine doped tin oxide, FTO, glass) minimizing light absorption losses. PSCs constructed using 1D TNW or 2D TNS yield enhanced photovoltaic performance compared to the 0D TNP counterparts. This is a result of i) improved infiltration of the perovskite in the porous TNW or TNS network and ii) facilitated electron transport and charge extraction at the TNW/perovskite or TNS/perovskite interfaces, thus reduced interfacial recombination loss. Employing a bilayered ETL film consisting of a self‐assembled TiO2 blocking layer and a subsequent TNW active layer, produces PSC devices with an efficiency exceeding 16%. This bilayered ETL film can simultaneously block the photogenerated holes and enhance electron ­extraction, therefore improving PSC performance.  相似文献   

8.
Organic–inorganic hybrid perovskite solar cells (PSCs) are a promising photovoltaic technology that has rapidly developed in recent years. Nevertheless, a large number of ionic defects within perovskite absorber can serve as non‐radiative recombination center to limit the performance of PSCs. Here, organic donor‐π‐acceptor (D‐π‐A) molecules with different electron density distributions are employed to efficiently passivate the defects in the perovskite films. The X‐ray photoelectron spectroscopy (XPS) analysis shows that the strong electron donating N,N‐dibutylaminophenyl unit in a molecule causes an increase in the electron density of the passivation site that is a carboxylate group, resulting in better binding with the defects of under‐coordinated Pb2+ cations. Carrier lifetime in the perovskite films measured by the time‐resolved photoluminescence spectrum is also prolonged by an increase in donation ability of the D‐π‐A molecules. As a consequence, these benefits contribute to an increase of 80 mV in the open circuit voltage of the devices, enabling a maximum power conversion efficiency (PCE) of 20.43%, in comparison with PCE of 18.52% for the control device. The authors' findings provide a novel strategy for efficient defect passivation in the perovskite solar cells based on controlling the electronic configuration of passivation molecules.  相似文献   

9.
The high thermal stability and facile synthesis of CsPbI2Br all‐inorganic perovskite solar cells (AI‐PSCs) have attracted tremendous attention. As far as electron‐transporting layers (ETLs) are concerned, low temperature processing and reduced interfacial recombination centers through tunable energy levels determine the feasibility of the perovskite devices. Although the TiO2 is the most popular ETL used in PSCs, its processing temperature and moderate electron mobility hamper the performance and feasibility. Herein, the highly stable, low‐temperature processed MgZnO nanocrystal‐based ETLs for dynamic hot‐air processed Mn2+ incorporated CsPbI2Br AI‐PSCs are reported. By holding its regular planar “n–i–p” type device architecture, the MgZnO ETL and poly(3‐hexylthiophene‐2,5‐diyl) hole transporting layer, 15.52% power conversion efficiency (PCE) is demonstrated. The thermal‐stability analysis reveals that the conventional ZnO ETL‐based AI‐PSCs show a serious instability and poor efficiency than the Mg2+ modified MgZnO ETLs. The photovoltaic and stability analysis of this improved photovoltaic performance is attributed to the suitable wide‐bandgap, low ETL/perovskite interface recombination, and interface stability by Mg2+ doping. Interestingly, the thermal stability analysis of the unencapsulated AI‐PSCs maintains >95% of initial PCE more than 400 h at 85 °C for MgZnO ETL, revealing the suitability against thermal degradation than conventional ZnO ETL.  相似文献   

10.
The most important factors dominating solar hydrogen synthesis efficiency include light absorption, charge separation and transport, and surface chemical reactions (charge utilization). In order to tackle these factors, an ordered 1D junction cascade photoelectrode for water splitting, grown via a simple low‐cost solution‐based process and consisting of nanoparticulate BiVO4 on 1D ZnO rods with cobalt phosphate (Co‐Pi) on the surface is synthesized. Flat‐band measurements reveal the feasibility of charge transfer from BiVO4 to ZnO, supported by PL measurements and photocurrent observation in the presence of an efficient hole scavenger, which demonstrate that quenching of luminescence of BiVO4 and enhanced current are caused by electron transfer from BiVO4 to ZnO. A dramatic cathodic shift in onset potential under both visible and full arc irradiation, coupled with a 12‐fold increase in photocurrent (ca. 3 mA cm‐2) are observed compared to BiVO4, resulting in ≈47% IPCE at 410 nm (4% for BiVO4) with high solar energy conversion efficiency (0.88%). The reasons for these enhancements stem from enhanced light absorption and trapping, in situ rectifying electron transfer from BiVO4 to ZnO, hole transfer to Co‐Pi for water oxidation, and facilitating electron transport along 1D ZnO.  相似文献   

11.
The surface defects of solution‐processed ZnO films lead to various intragap states. When the solution‐processed ZnO films are used as electron transport interlayers (ETLs) in inverted organic solar cells, the intragap states act as interfacial recombination centers for photogenerated charges and thereby degrade the device performance. Here, a simple passivation method based on ethanedithiol (EDT) treatment is demonstrated, which effectively removes the surface defects of the ZnO nanocrystal films by forming zinc ethanedithiolates. The passivation by EDT treatment modulates the intragap states of the ZnO films and introduces a new intragap band. When the EDT‐treated ZnO nanocrystal films are used as ETLs in inverted organic solar cells, both the power conversion efficiency and stability of the devices are improved. The control studies show that the solar cells with EDT‐treated ZnO films exhibit reduced charge recombination rates and enhanced charge extraction properties. These features are consistent with the fact that the modulation of the intragap states results in reduction of interfacial recombination as well as the improved charge selectivity and electron transport properties of the ETLs. It is further demonstrated that the EDT treatment‐based passivation method can be extended to ZnO films deposited from sol–gel precursors.  相似文献   

12.
Developing strategies that can promote charge transportation in photodevices is crucial for achieving high solar energy conversion efficiency. Herein a moisture‐assisted nitridation approach is presented for the fabrication of efficient gallium‐zinc oxynitride (GaN:ZnO) photoanode with compact structure to facilitate the charge transportation. With moisture‐assisted nitridation, the charge separation efficiency and injection efficiency obtained on GaN:ZnO photoanode are significantly enhanced. Correspondingly, the photocurrent at 1.23 V vs reversible hydrogen electrode (RHE) has 18 folds improvement compared with that prepared without moisture assistance. Furthermore, via treating with HCl acid and modification with cobalt phosphate (CoPi) as a cocatalyst, state‐of‐the‐art photocurrent over 2.0 mA cm?2 is achieved on independent GaN:ZnO photoanode when bias is higher than 1.4 V vs RHE. To the best of our knowledge, this is the first paradigm of moisture‐assisted preparing oxynitride‐based photoanode. The participation of moisture is found to improve the interconnection between adjacent GaN:ZnO nanoparticles as well as that between the GaN:ZnO film and the underlying substrate. Moreover, the volatilization of Zn can be substantially suppressed due to the modulation of reaction pathway by moisture. These two factors are confirmed to be the main reasons for the enhanced charge transportation and PEC performance obtained on GaN:ZnO photoanode.  相似文献   

13.
Developing efficient narrow bandgap Pb–Sn hybrid perovskite solar cells with high Sn‐content is crucial for perovskite‐based tandem devices. Film properties such as crystallinity, morphology, surface roughness, and homogeneity dictate photovoltaic performance. However, compared to Pb‐based analogs, controlling the formation of Sn‐containing perovskite films is much more challenging. A deeper understanding of the growth mechanisms in Pb–Sn hybrid perovskites is needed to improve power conversion efficiencies. Here, in situ optical spectroscopy is performed during sequential deposition of Pb–Sn hybrid perovskite films and combined with ex situ characterization techniques to reveal the temporal evolution of crystallization in Pb–Sn hybrid perovskite films. Using a two‐step deposition method, homogeneous crystallization of mixed Pb–Sn perovskites can be achieved. Solar cells based on the narrow bandgap (1.23 eV) FA0.66MA0.34Pb0.5Sn0.5I3 perovskite absorber exhibit the highest efficiency among mixed Pb–Sn perovskites and feature a relatively low dark carrier density compared to Sn‐rich devices. By passivating defect sites on the perovskite surface, the device achieves a power conversion efficiency of 16.1%, which is the highest efficiency reported for sequential solution‐processed narrow bandgap perovskite solar cells with 50% Sn‐content.  相似文献   

14.
Organic–inorganic hybrid perovskite solar cells with mixed cations and mixed halides have achieved impressive power conversion efficiency of up to 22.1%. Phase segregation due to the mixed compositions has attracted wide concerns, and their nature and origin are still unclear. Some very useful analytical techniques are controversial in microstructural and chemical analyses due to electron beam‐induced damage to the “soft” hybrid perovskite materials. In this study photoluminescence, cathodoluminescence, and transmission electron microscopy are used to study charge carrier recombination and retrieve crystallographic and compositional information for all‐inorganic CsPbIBr2 films on the nanoscale. It is found that under light and electron beam illumination, “iodide‐rich” CsPbI(1+x )Br(2?x ) phases form at grain boundaries as well as segregate as clusters inside the film. Phase segregation generates a high density of mobile ions moving along grain boundaries as ion migration “highways.” Finally, these mobile ions can pile up at the perovskite/TiO2 interface resulting in formation of larger injection barriers, hampering electron extraction and leading to strong current density–voltage hysteresis in the polycrystalline perovskite solar cells. This explains why the planar CsPbIBr2 solar cells exhibit significant hysteresis in efficiency measurements, showing an efficiency of up to 8.02% in the reverse scan and a reduced efficiency of 4.02% in the forward scan, and giving a stabilized efficiency of 6.07%.  相似文献   

15.
Block‐copolymer templated chemical solution deposition is used to prepare mesoporous Nd‐doped TiO2 electrodes for perovskite‐based solar cells. X‐ray diffraction and photothermal deflection spectroscopy show substitutional incorporation into the TiO2 crystal lattice for low Nd concentration, and increasing interstitial doping for higher concentrations. Substitutional Nd‐doping leads to an increase in stability and performance of perovskite solar cells by eliminating defects and thus increasing electron transport and reducing charge recombination in the mesoporous TiO2. The optimized doping concentration of 0.3% Nd enables the preparation of perovskite solar cells with stabilized power conversion efficiency of >18%.  相似文献   

16.
Compact TiO2 is widely used as an electron transport material in planar‐perovskite solar cells. However, TiO2‐based planar‐perovskite solar cells exhibit low efficiencies due to intrinsic problems such as the unsuitable conduction band energy and low electron extraction ability of TiO2. Herein, the planar TiO2 electron transport layer (ETL) of perovskite solar cells is modified with ionic salt CuI via a simple one‐step spin‐coating process. The p‐type nature of the CuI islands on the TiO2 surface leads to modification of the TiO2 band alignment, resulting in barrier‐free contacts and increased open‐circuit voltage. It is found that the polarity of the CuI‐modified TiO2 surface can pull electrons to the interface between the perovskite and the TiO2, which improves electron extraction and reduces nonradiative recombination. The CuI solution concentration is varied to control the electron extraction of the modified TiO2 ETL, and the optimized device shows a high efficiency of 19.0%. In addition, the optimized device shows negligible hysteresis, which is believed to be due to the removal of trap sites and effective electron extraction by CuI‐modified TiO2. These results demonstrate the hitherto unknown effect of p‐type ionic salts on electron transport material.  相似文献   

17.
In addition to a good perovskite light absorbing layer, the hole and electron transport layers play a crucial role in achieving high‐efficiency perovskite solar cells. Here, a simple, one‐step, solution‐based method is introduced for fabricating high quality indium‐doped titanium oxide electron transport layers. It is shown that indium‐doping improves both the conductivity of the transport layer and the band alignment at the ETL/perovskite interface compared to pure TiO2, boosting the fill‐factor and voltage of perovskite cells. Using the optimized transport layers, a high steady‐state efficiency of 17.9% for CH3NH3PbI3‐based cells and 19.3% for Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3‐based cells is demonstrated, corresponding to absolute efficiency gains of 4.4% and 1.2% respectively compared to TiO2‐based control cells. In addition, a steady‐state efficiency of 16.6% for a semi‐transparent cell is reported and it is used to achieve a four‐terminal perovskite‐silicon tandem cell with a steady‐state efficiency of 24.5%.  相似文献   

18.
The unfavorable morphology and inefficient utilization of phase transition reversibility have limited the high‐temperature‐processed inorganic perovskite films in both efficiency and stability. Here, a simple soft template‐controlled growth (STCG) method is reported by introducing (adamantan‐1‐yl)methanammonium to control the nucleation and growth rate of CsPbI3 crystals, which gives rise to pinhole‐free CsPbI3 film with a grain size on a micrometer scale. The STCG‐based CsPbI3 perovskite solar cell exhibits a power conversion efficiency of 16.04% with significantly reduced defect densities and charge recombination. More importantly, an all‐inorganic solar cell with the architecture fluorine‐doped tin oxide (FTO)/NiOx/STCG‐CsPbI3/ZnO/indium‐doped tin oxide (ITO) is successfully fabricated to demonstrate its real advantage in thermal stability. By suppressing the inductive effect of defects during the phase transition and utilizing the unique reversibility of the phase transition for the high‐temperature‐processed CsPbI3 film, the all‐inorganic solar cell retains 90% of its initial efficiency after 3000 h of continuous light soaking and heating.  相似文献   

19.
Organic‐inorganic metal halide perovskite solar cells show hysteresis in their current–voltage curve measured at a certain voltage sweep rate. Coinciding with a slow transient current response, the hysteresis is attributed to a slow voltage‐driven (ionic) charge redistribution in the perovskite solar cell. Thus, the electric field profile and in turn the electron/hole collection efficiency become dependent on the biasing history. Commonly, a positive prebias is beneficial for a high power‐conversion efficiency. Fill factor and open‐circuit voltage increase because the prebias removes the driving force for charge to pile‐up at the electrodes, which screen the electric field. Here, it is shown that the piled‐up charge can also be beneficial. It increases the probability for electron extraction in case of extraction barriers due to an enhanced electric field allowing for tunneling or dipole formation at the perovskite/electrode interface. In that case, an inverted hysteresis is observed, resulting in higher performance metrics for a voltage sweep starting at low prebias. This inverted hysteresis is particularly pronounced in mixed‐cation mixed‐halide systems which comprise a new generation of perovskite solar cells that makes it possible to reach power‐conversion efficiencies beyond 20%.  相似文献   

20.
Achieving light harvesting is crucial for the efficiency of the solar cell. Constructing optical structures often can benefit from micro‐nanophotonic imprinting. Here, a simple and facile strategy is developed to introduce a large area grating structure into the perovskite‐active layer of a solar cell by utilizing commercial optical discs (CD‐R and DVD‐R) and achieve high photovoltaic performance. The constructed diffraction grating on the perovskite active layer realizes nanophotonic light trapping by diffraction and effectively suppresses carrier recombination. Compared to the pristine perovskite solar cells (PSCs), the diffraction‐grating perovskite devices with DVD obtain higher power conversion efficiency and photocurrent density, which are improved from 16.71% and 21.67 mA cm?2 to 19.71% and 23.11 mA cm?2. Moreover, the stability of the PSCs with diffraction‐grating‐structured perovskite active layer is greatly enhanced. The method can boost photonics merge into the remarkable perovskite materials for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号