首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use of ptychography on a complete 12‐layer solar cell stack is presented and it is shown that this technique provides the necessary insight to enable efficient development of inks and processes for the most critical layers in the tandem stack such as the recombination layer where solvent penetration in fully solution processed 12‐layer stacks is critical in eleven of the steps.  相似文献   

4.
5.
6.
7.
8.
9.
Perovskite solar cells (PSCs) are now at the forefront of the state‐of‐the‐art photovoltaic technologies due to their high efficiency and low fabrication costs. To further realize the potential of this fascinating class of solar cells, nanostructured functional materials have been playing important roles. 2D layered materials have attracted a great deal of interest due to their fascinating properties and unique structure. Recently, the exploration of a wide range of novel 2D materials for use in PSCs has seen considerable progress, but still a lot remains to be done in this field. In this progress report, the advancements that have recently been made in the application of these emerging 2D materials, beyond graphene, for PSCs are presented. Both the advantages and challenges of these 2D materials for PSCs are highlighted. Finally, important directions for the future advancements toward efficient, low‐cost, and stable PSCs are outlined.  相似文献   

10.
11.
12.
13.
Few‐layer ultrathin nanosheets and ultrasmall quantum dots of black phosphorus (BP) have attracted increasing research interest due to their fascinating properties including a tunable bandgap, high carrier mobility, and ambipolar conduction ability. These excellent properties together with their unique structures make BP derivatives promising candidates for a wide range of device applications. In this research news, the latest advancements in the synthesis, properties, and applications of BP and its derivatives are highlighted. In particular, the focus is on the use of these rising star materials for emerging solar cells, in terms of both theoretical predictions and experimental investigations. Finally, the authors' personal perspectives on potential future research directions are provided.  相似文献   

14.
A hybrid heterojunction and solid‐state photoelectrochemical solar cell based on graphene woven fabrics (GWFs) and silicon is designed and fabricated. The GWFs are transferred onto n‐Si to form a Schottky junction with an embedded polyvinyl alcohol based solid electrolyte. In the hybrid solar cell, solid electrolyte serves three purposes simutaneously; it is an anti‐reflection layer, a chemical modification carrier, and a photoelectrochemical channel. The open‐circuit voltage, short‐circuit current density, and fill factor are all significantly improved, achieving an impressive power conversion efficiency of 11%. Solar cell models are constructed to confirm the hybrid working mechanism, with the heterojunction junction and photoelectrochemical effect functioning synergistically.  相似文献   

15.
16.
Over the past few years, hybrid halide perovskites have emerged as a highly promising class of materials for photovoltaic technology, and the power conversion efficiency of perovskite solar cells (PSCs) has accelerated at an unprecedented pace, reaching a record value of over 22%. In the context of PSC research, wide‐bandgap semiconducting metal oxides have been extensively studied because of their exceptional performance for injection and extraction of photo‐generated carriers. In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment with halide perovskites, in the form of nanostructured layers and compact thin films, can not only assist with charge transport but also improve the stability of PSCs under ambient conditions. Strategies for the implementation of metal oxides with tailored compositions and structures, and for the engineering of their interfaces with perovskites will be critical for the future development and commercialization of PSCs.  相似文献   

17.
Co3O4 is investigated as a light absorber for all‐oxide thin‐film photovoltaic cells because of its nearly ideal optical bandgap of around 1.5 eV. Thin film TiO2/Co3O4 heterojunctions are produced by spray pyrolysis of TiO2 as a window layer, followed by pulsed laser deposition of Co3O4 as a light absorbing layer. The photovoltaic performance is investigated as a function of the Co3O4 deposition temperature and a direct correlation is found. The deposition temperature seems to affect both the crystallinity and the morphology of the absorber, which affects device performance. A maximum power of 22.7 μW cm?2 is obtained at the highest deposition temperature (600 °C) with an open circuit photovoltage of 430 mV and a short circuit photocurrent density of 0.2 mA cm?2. Performing deposition at 600 °C instead of room temperature improves power by an order of magnitude and reduces the tail states (Urbach edge energy). These phenomena can be explained by larger grains that grows at high temperature, as opposed to many nucleation events that occur at lower temperature.  相似文献   

18.
19.
MXene, a new class of 2D materials, has gained significant attention owing to its attractive electrical conductivity, tunable work function, and metallic nature for wide range of applications. Herein, delaminated few layered Ti3C2Tx MXene contacted Si solar cells with a maximum power conversion efficiency (PCE) of ≈11.5% under AM1.5G illumination are demonstrated. The formation of an Ohmic junction of the metallic MXene to n+‐Si surface efficiently extracts the photogenerated electrons from n+np+‐Si, decreases the contact resistance, and suppresses the charge carrier recombination, giving rise to excellent open‐circuit voltage and short‐circuit current density. The rapid thermal annealing process further improves the electrical contact between Ti3C2Tx MXene and n+‐Si surface by reducing sheet resistance, increasing electrical conductivity, and decreasing cell series resistance, thus leading to a remarkable improvement in fill factor and overall PCE. The work demonstrated here can be extended to other MXene compositions as potential electrodes for developing highly performing solar cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号