首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

2.
Self‐supporting Sn foil is a promising high‐volumetric‐capacity anode for lithium ion batteries (LIBs), but it suffers from low initial Coulombic efficiency (ICE). Here, mechanical prelithiation is adopted to improve ICE, and it is found that Sn foils with coarser grains are prone to cause electrode damage. To mitigate damage and prepare thinner lithiated electrodes, 3Ag0.5Cu96.5Sn foil is used that has more refined grains (5–10 µm) instead of Sn (50–100 µm), where the abundant grain boundaries (GBs) offer more sliding systems to release stress and reduce deep fractures. Thus, the thickness of Lix3Ag0.5Cu96.5Sn can be reduced to 50 µm, compared to 100 µm LixSn. When the foils contact open air, the Sn‐Li‐O(H) products are more stable than Li‐O(H), thus Lix3Ag0.5Cu96.5Sn shows outstanding air stability. The as‐prepared 50 µm foil anode achieves stable 200 cycles in LiFePO4//Lix3Ag0.5Cu96.5Sn full cell (≈2.65 mAh cm?2) and the capacity retention is 95%. Even at 5C, the capacity of Lix3Ag0.5Cu96.5Sn is still up to ≈1.8 mAh cm?2. The cycle life of NCM523//Lix3Ag0.5Cu96.5Sn full cell exceeds that of NCM523//Li. Furthermore, 70 µm Lix3Ag0.5Cu96.5Sn is used as double‐sided anode for a 3 cm × 2.8 cm pouch cell and its actual volumetric capacity density is 674 mAh cm?3 after 50 cycles.  相似文献   

3.
Subzero‐temperature Li‐ion batteries (LIBs) are highly important for specific energy storage applications. Although the nickel‐rich layered lithium transition metal oxides(LiNixCoyMnzO2) (LNCM) (x > 0.5, x + y +z = 1) are promising cathode materials for LIBs, their very slow Li‐ion diffusion is a main hurdle on the way to achieve high‐performance subzero‐temperature LIBs. Here, a class of low‐temperature organic/inorganic hybrid cathode materials for LIBs, prepared by grafting a conducting polymer coating on the surface of 3 µm sized LiNi0.6Co0.2Mn0.2O2 (LNCM‐3) material particles via a greener diazonium soft‐chemistry method is reported. Specifically, LNCM‐3 particles are uniformly coated with a thin polyphenylene film via the spontaneous reaction between LNCM‐3 and C6H5N2+BF4?. Compared with the uncoated one, the polyphenylene‐coated LNCM‐3 (polyphenylene/LNCM‐3) has shown much improved low‐temperature discharge capacity (≈148 mAh g?1 at 0.1 C, ?20 °C), outstanding rate capability (≈105 mAh g?1 at 1 C, ?20 °C), and superior low‐temperature long‐term cycling stability (capacity retention is up to 90% at 0.5 C over 1150 cycles). The low‐temperature performance of polyphenylene/LNCM‐3 is the best among the reported state‐of‐the art cathode materials for LIBs. The present strategy opens up a new avenue to construct advanced cathode materials for wider range applications.  相似文献   

4.
Herein, P′2‐type Na0.67[Ni0.1Fe0.1Mn0.8]O2 is introduced as a promising new cathode material for sodium‐ion batteries (SIBs) that exhibits remarkable structural stability during repetitive Na+ de/intercalation. The O? Ni? O? Mn? O? Fe? O bond in the octahedra of transition‐metal layers is used to suppress the elongation of the Mn? O bond and to improve the electrochemical activity, leading to the highly reversible Na storage mechanism. A high discharge capacity of ≈220 mAh g?1 (≈605 Wh kg?1) is delivered at 0.05 C (13 mAg?1) with a high reversible capacity of ≈140 mAh g?1 at 3 C and excellent capacity retention of 80% over 200 cycles. This performance is associated with the reversible P′2–OP4 phase transition and small volume change upon charge and discharge (≈3%). The nature of the sodium storage mechanism in a full cell paired with a hard carbon anode reveals an unexpectedly high energy density of ≈542 Wh kg?1 at 0.2 C and good capacity retention of ≈81% for 500 cycles at 1 C (260 mAg?1).  相似文献   

5.
Operando X‐ray diffraction (XRD) and X‐ray absorption spectroscopy (XAS) studies of Ge anodes are carried out to understand the effect of cycling rate on Ge phase transformation during charge/discharge process and to relate that effect to capacity. It is discovered that the formation of crystalline Li15Ge4 (c‐Li15Ge4) during lithiation is suppressed beyond a certain cycling rate. A very stable and reversible high capacity of ≈1800 mAh g?1 can be attained up to 100 cycles at a slow C‐rate of C/21 when there is complete conversion of Ge anode into c‐Li15Ge4. When the C‐rate is increased to ≈C/10, the lithiation reaction is more heterogeneous and a relatively high capacity of ≈1000 mAh g?1 is achieved with poorer electrochemical reversibility. An increase in C‐rate to C/5 and higher reduces the capacity (≈500 mAh g?1) due to an impeded transformation from amorphous LixGe to c‐Li15Ge4, and yet improves the electrochemical reversibility. A proposed mechanism is presented to explain the C‐rate dependent phase transformations and the relationship of these to capacity fading. The operando XRD and XAS results provide new insights into the relationship between structural changes in Ge and battery capacity, which are important for guiding better design of high‐capacity anodes.  相似文献   

6.
“Zero‐strain” compounds are ideal energy‐storage materials for long‐term cycling because they present negligible volume change and significantly reduce the mechanically induced deterioration during charging–discharging. However, the explored “zero‐strain” compounds are very limited, and their energy densities are low. Here, γ phase Li3.08Cr0.02Si0.09V0.9O4 (γ‐LCSVO) is explored as an anode compound for lithium‐ion batteries, and surprisingly its “zero‐strain” Li+ storage during Li+ insertion–extraction is found through using various state‐of‐the‐art characterization techniques. Li+ sequentially inserts into the 4c(1) and 8d sites of γ‐LCSVO, but its maximum unit‐cell volume variation is only ≈0.18%, the smallest among the explored “zero‐strain” compounds. Its mean strain originating from Li+ insertion is only 0.07%. Consequently, both γ‐LCSVO nanowires (γ‐LCSVO‐NW) and micrometer‐sized particles (γ‐LCSVO‐MP) exhibit excellent cycling stability with 90.1% and 95.5% capacity retention after as long as 2000 cycles at 10C, respectively. Moreover, γ‐LCSVO‐NW and γ‐LCSVO‐MP respectively deliver large reversible capacities of 445.7 and 305.8 mAh g?1 at 0.1C, and retain 251.2 and 78.4 mAh g?1 at 10C. Additionally, γ‐LCSVO shows a suitably safe operating potential of ≈1.0 V, significantly lower than that of the famous “zero‐strain” Li4Ti5O12 (≈1.6 V). These merits demonstrate that γ‐LCSVO can be a practical anode compound for stable, high‐energy, fast‐charging, and safe Li+ storage.  相似文献   

7.
Olivine‐type LiMnPO4 (LMP) cathodes have gained enormous attraction for Li‐ion batteries (LIBs), thanks to their large theoretical capacity, high discharge platform, and thermal stability. However, it is still hugely challenging to achieve encouraging Li‐storage behaviors owing to their low electronic conductivity and limited lithium diffusion. Herein, the core double‐shell Ti‐doped LMP@NaTi2(PO4)3@C/3D graphene (TLMP@NTP@C/3D‐G) architecture is designed and constructed via an in situ synthetic methodology. A continuous electronic conducting network is formed with the unfolded 3D‐G and conducting carbon nanoshell. The Nasicon‐type NTP nanoshell with exceptional ionic conductivity efficiently inhibits gradual enrichment in by‐products, and renders low surfacial/interfacial electron/ion‐diffusion resistance. Besides, a rapid Li+ diffusion in the bulk structure is guaranteed with the reduction of MnLi+˙ antisite defects originating from the synchronous Ti‐doping. Benefiting from synergetic contributions from these design rationales, the integrated TLMP@NTP@C/3D‐G cathode yields high initial discharge capacity of ≈164.8 mAh g?1 at 0.05 C, high‐rate reversible capacity of ≈116.2 mAh g?1 at 10 C, and long‐term capacity retention of ≈93.3% after 600 cycles at 2 C. More significantly, the electrode design developed here will exert significant impact upon constructing other advanced cathodes for high‐energy/power LIBs.  相似文献   

8.
Silicon is attracting enormous attention due to its theoretical capacity of 4200 mAh g?1 as an anode for Li‐ion batteries (LIBs). It is of fundamental importance and challenge to develop low‐temperature reaction route to controllably synthesize Si/Ti3C2 MXene LIBs anodes. Herein, a novel and efficient strategy integrating in situ orthosilicate hydrolysis and a low‐temperature reduction process to synthesize Si/Ti3C2 MXene composites is reported. The hydrolysis of tetraethyl orthosilicate leads to homogenous nucleation and growth of SiO2 nanoparticles on the surface of Ti3C2 MXene. Subsequently, SiO2 nanoparticles are reduced to Si via a low‐temperature (200 °C) reduction route. Importantly, Ti3C2 MXene not only provides fast transfer channels for Li+ and electrons, but also relieves volume expansion of Si during cycling. Moreover, the characteristics of excellent pseudocapacitive performance and high conductivity of Ti3C2 MXene can synergistically contribute to the enhancement of energy storage performance. As expected, Ti3C2/Si anode exhibits an outstanding specific capacity of 1849 mAh g?1 at 100 mA g?1, even retaining 956 mAh g?1 at 1 A g?1. The low‐temperature synthetic route to Si/Ti3C2 MXene electrodes and involved battery‐capacitive dual‐model energy storage mechanism has potential in the design of novel high‐performance electrodes for energy storage devices.  相似文献   

9.
With the development of flexible electronics, flexible lithium ion batteries (LIBs) have received great attention. Previously, almost all reported flexible components had shortcomings related to poor mechanical flexibility, low energy density, and poor safety, which led to the failure of scalable applications. This study demonstrates a fully flexible lithium ion battery using LiCoO2 as the cathode, Li4Ti5O12 as the anode, and graphene film as the flexible current collector. The graphene oxide modified gel polymer electrolyte exhibits higher ionic conductivity than a conventional liquid electrolyte and improves the safety of the flexible battery. The optimum design of the flexible graphene battery exhibits super electrochemical performance, with a 2.3 V output voltage plateau and a satisfactory capacity of 143.0 mAh g?1 at 1 C. The mass energy density and power density are both ≈1.4 times higher than a standard electrode using metal foils as current collectors. No capacity loss is observed after 100 thousand cycles of mechanical bending. More importantly, even in the clipping state, this flexible gel polymer battery can still demonstrate a stable and safe electrochemical performance. This work may lead to a promising strategy of high‐performance scalable LIBs for the next‐generation flexible electronics.  相似文献   

10.
Efficient synthetic methods to produce high‐performance electrode‐active materials are crucial for developing energy storage devices for large‐scale applications, such as hybrid supercapacitors (HSCs). Here, an effective approach to obtain controllable carbon‐encapsulated T‐Nb2O5 nanocrystals (NCs) is presented, based on the solvothermal treatment of NbCl5 in acetophenone. Two separate condensation reactions of acetophenone generate an intimate and homogeneous mixture of Nb2O5 particles and 1,3,5‐triphenylbenzene (TPB), which acts as a unique carbon precursor. The electrochemical performance of the resulting composites as anode electrode materials can be tuned by varying the Nb2O5/TPB ratio. Remarkable performances are achieved for Li‐ion and Na‐ion energy storage systems at high charge–discharge rates (specific capacities of ≈90 mAh g?1 at 100 C rate for lithium and ≈125 mAh g?1 at 20 C for sodium). High energy and power densities are also achieved with Li‐ and Na‐ion HSC devices constructed by using the Nb2O5/C composites as anode and activated carbon (YPF‐50) as cathode, demonstrating the excellent electrochemical properties of the materials synthesized with this approach.  相似文献   

11.
Niobates with shear ReO3 crystal structures are remarkably promising anode materials for Li+ batteries due to their large capacities, inherent safety, and high cycling stability. However, they generally suffer from limited rate capabilities rooted in their insufficient electronic and Li+ conductivities. Here, micrometer‐sized copper niobate (Cu2Nb34O87) bulk as a new anode material having a high electronic conductivity of 2.1 × 10?5 S cm?1 and an impressive average Li+ diffusion coefficient of ≈3.5 × 10?13 cm2 s?1 is exploited, which synergistically leads to an excellent rate capability (184 mAh g?1 at 10 C) while remaining a large reversible capacity and superior cycling stability. Moreover, the fast Li+ transport pathways of grain boundary (micrometer scale) → lattice deformation area (nanometer scale) → (010) crystallographic plane (angstrom scale) are demonstrated in Cu2Nb34O87. Therefore, these results could pave the way for practical application of Cu2Nb34O87 in high‐performance Li+ batteries.  相似文献   

12.
The fabrication of ultrasmall and high‐content SnO2 nanocrystals anchored on doped graphene can endow SnO2 with superior electrochemical properties. Herein, an effective strategy, involving molecular engineering of a layer‐by‐layer assembly technique, is proposed to homogeneously anchor SnO2 nanocrystals on nitrogen/sulfur codoped graphene (NSGS), which serves as an advanced anode material in lithium/sodium‐ion batteries (LIBs/SIBs). Benefiting from novel design and specific structure, the optimized NSGS for LIBs displays high initial capacity (2123.9 mAh g?1 at 0.1 A g?1), long‐term cycling performance (only 0.8% loss after 500 cycles), and good rate capability (477.4 mAh g?1 at 5 A g?1). In addition, the optimized NSGS for SIBs also delivers high initial capacity (791.7 mAh g?1 at 0.1 A g?1) and high reversible capacity (180.2 mAh g?1 after 500 cycles at 0.5 A g?1). Meanwhile, based on the detailed analysis of phase transition and electrochemical reaction kinetics, the reaction mechanisms of NSGS in LIBs and SIBs as well as the distinction in LIBs/SIBs are clearly articulated. Notably, to further explore the practical application, Li/Na+ full cells are also assembled by coupling the optimized NSGS anode with LiCoO2 and Na3V2(PO4)3/C cathodes, respectively.  相似文献   

13.
Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres are synthesized through a three‐step hydrothermal procedure. The average thickness of the Li4Ti5O12 sheets is only ≈(6.6 ± 0.25) nm and the specific surface area of the sample is 178 m2 g?1. When applied into lithium ion batteries as anode materials, the hierarchical Li4Ti5O12 microspheres exhibit high specific capacities at high rates (156 mA h g?1 at 20 C, 150 mA h g?1 at 50 C) and maintain a capacity of 126 mA h g?1 after 3000 cycles at 20 C. The results clearly suggest that the utility of hierarchical structures based on ultrathin nanosheets can promote the lithium insertion/extraction reactions in Li4Ti5O12. The obtained hierarchical Li4Ti5O12 with ultrathin nanosheets and large specific surface area can be perfect anode materials for the lithium ion batteries applied in high power facilities, such as electric vehicles and hybrid electric vehicles.  相似文献   

14.
This work introduces an effective, inexpensive, and large‐scale production approach to the synthesis of a carbon coated, high grain boundary density, dual phase Li4Ti5O12‐TiO2 nanocomposite anode material for use in rechargeable lithium‐ion batteries. The microstructure and morphology of the Li4Ti5O12‐TiO2‐C product were characterized systematically. The Li4Ti5O12‐TiO2‐C nanocomposite electrode yielded good electrochemical performance in terms of high capacity (166 mAh g?1 at a current density of 0.5 C), good cycling stability, and excellent rate capability (110 mAh g?1 at a current density of 10 C up to 100 cycles). The likely contributing factors to the excellent electrochemical performance of the Li4Ti5O12‐TiO2‐C nanocomposite could be related to the improved morphology, including the presence of high grain boundary density among the nanoparticles, carbon layering on each nanocrystal, and grain boundary interface areas embedded in a carbon matrix, where electronic transport properties were tuned by interfacial design and by varying the spacing of interfaces down to the nanoscale regime, in which the grain boundary interface embedded carbon matrix can store electrolyte and allows more channels for the Li+ ion insertion/extraction reaction. This research suggests that carbon‐coated dual phase Li4Ti5O12‐TiO2 nanocomposites could be suitable for use as a high rate performance anode material for lithium‐ion batteries.  相似文献   

15.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

16.
Ultrafine copper nanopalm tree‐like frameworks conformally decorated with iron oxide (Cu NPF@Fe2O3) are prepared by a facile electrodeposition method utilizing bromine ions as unique anisotropic growth catalysts. The formation mechanism and control over Cu growth are comprehensively investigated under various conditions to provide a guideline for fabricating a Cu nanoarchitecture via electrochemical methods. The optimized Cu NPFs exhibit ultrathin (<90 nm) and elongated (2–50 µm) branches with well‐interconnected and entangled features, which result in highly desirable attributes such as a large specific surface area (≈6.97 m2 g?1), free transfer pathway for Li+, and high electrical conductivity. The structural advantages of Cu NPF@Fe2O3 enhance the electrochemical kinetics, providing large reactivity, fast Li+/electron transfer, and structural stability during cycling, that lead to superior electrochemical Li storage performance. The resulting Cu NPF@Fe2O3 demonstrates a high specific capacity (919.5 mAh g–1 at 0.1 C), long‐term stability (801.1 mAh g–1 at 2 C, ≈120% retention after 500 cycles), and outstanding rate capability (630 mAh g–1 at 10 C).  相似文献   

17.
Ni‐rich Li[NixCoyMn1?x?y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g?1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g?1 at 3.0–4.3 V) and rate capability (152.7 mAh g?1 at a current density of 1000 mA g?1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.  相似文献   

18.
Na3V2(PO4)3 (NVP) has excellent electrochemical stability and fast ion diffusion coefficient due to the 3D Na+ ion superionic conductor framework, which make it an attractive cathode material for lithium ion batteries (LIBs). However, the electrochemical performance of NVP needs to be further improved for applications in electric vehicles and hybrid electric vehicles. Here, nanoflake‐assembled hierarchical NVP/C microflowers are synthesized using a facile method. The structure of as‐synthesized materials enhances the electrochemical performance by improving the electron conductivity, increasing electrode–electrolyte contact area, and shortening the diffusion distance. The as‐synthesized material exhibits a high capacity (230 mAh g?1), excellent cycling stability (83.6% of the initial capacity is retained after 5000 cycles), and remarkable rate performance (91 C) in hybrid LIBs. Meanwhile, the hybrid LIBs with the structure of NVP || 1 m LiPF6/EC (ethylene carbonate) + DMC (dimethyl carbonate) || NVP and Li4Ti5O12 || 1 m LiPF6/EC + DMC || NVP are assembled and display capacities of 79 and 73 mAh g?1, respectively. The insertion/extraction mechanism of NVP is systematically investigated, based on in situ X‐ray diffraction. The superior electrochemical performance, the design of hybrid LIBs, and the insertion/extraction mechanism investigation will have profound implications for developing safe and stable, high‐energy, and high‐power LIBs.  相似文献   

19.
Nickel sulfides are regarded as promising anode materials for advanced rechargeable lithium‐ion batteries due to their high theoretical capacity. However, capacity fade arising from significant volume changes during operation greatly limits their practical applications. Herein, confined NiSx@C yolk–shell microboxes are constructed to address volume changes and confine the active material in the internal void space. Having benefited from the yolk–shell structure design, the prepared NiSx@C yolk–shell microboxes display excellent electrochemical performance in lithium‐ion batteries. Particularly, it delivers impressive cycle stability (460 mAh g?1 after 2000 cycles at 1 A g?1) and superior rate performance (225 mAh g?1 at 20 A g?1). Furthermore, the lithium storage mechanism is ascertained with in situ synchrotron high‐energy X‐ray diffractions and in situ electrochemical impedance spectra. This unique confined yolk–shell structure may open up new strategies to create other advanced electrode materials for high performance electrochemical storage systems.  相似文献   

20.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号