首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mevalonate pathway deregulation has been observed in several diseases, including Mevalonate kinase deficiency (MKD). MKD is a hereditary auto-inflammatory disorder, due to mutations at mevalonate kinase gene (MVK), encoding mevalonate kinase (MK) enzyme. MVK mutations have been reported as associated with impairment of mevalonate pathway with consequent decrease of protein prenylation levels, defective autophagy and increase of IL-1β secretion, followed by cell death. Since 25-hydroxycholesterol (25-HC), a metabolite of cholesterol, can suppress IL-1β production, thus reducing inflammation, we evaluated the effect of 25-HC in an in vitro model of mevalonate pathway alteration, obtained using Lovastatin. Human glioblastoma cell line (U87-MG) was chosen to mimic, at least in part, the central nervous system impairment observed in MKD; 25-HC effects were evaluated aimed at disclosing if this compound could be considered as novel potential drug for MKD.Our results showed that 25-HC is able to reduce inflammation but it is ineffective to restore autophagy flux and to decrease apoptosis levels, both caused by lower protein prenylation; so, in spite of its anti-inflammatory action it is not useful to rescue defective prenylation/autophagy impairment-driven apoptosis in Lovastatin impaired mevalonate pathway.We hypothesize the presence in the mevalonate pathway of alternative mechanisms acting between inflammation and apoptotic autophagy impairment.  相似文献   

4.
ent-Kaurenic acid and many natural derivatives of this diterpene are known to have interesting biological properties. ent-15-Oxo-kaur-16-en-19-oic acid can be easily obtained from grandiflorolic acid which was first isolated from Espeletia grandiflora. The present work describes the proapoptotic effect of ent-15-oxo-kaur-16-en-19-oic acid on the human prostate carcinoma epithelial cell line PC-3 as evidenced by the changes in the expression level of proteins associated with the execution and regulation of apoptosis. Cell viability was affected upon exposure to the compound, the IC(50) were determined as 3.7 microg/ml, which is 4 times lower than that corresponding to a primary cell culture of fibroblasts (14.8 microg/mL). Through Western blot analysis, active forms of caspace-3 associated with the specific proteolysis of Poly(ADP-ribose) polymerase (PARP) were detected. Reduced levels of the antiapoptotic protein Bcl-2, as well as the appearance of internucleosomal DNA fragmentation, were also demonstrated. Thus, ent-15-oxo-kaur-16-en-19-oic acid may be a promising lead compound for new chemopreventive strategies, alone or in combination with traditional chemotherapy agents to overcome drug resistance in tumoral cells.  相似文献   

5.
6.
Recently, we found that testicular macrophages produce 25-hydroxycholesterol (25-HC) and express 25-hydroxylase, the enzyme that converts cholesterol to 25-HC. In addition, 25-HC may be an important paracrine factor mediating the known interactions between macrophages and neighboring Leydig cells, because it is efficiently converted to testosterone by Leydig cells. The purpose of the present study was to determine if testosterone can regulate the production of 25-HC in rat testicular macrophages, representing a potential negative-feedback loop from Leydig cells. We found that expression of 25-hydroxylase mRNA and production of 25-HC by cultured testicular macrophages were significantly inhibited by testosterone at 10 micro g/ml. This dose of testosterone did not have an effect on cell viability and did not change the rate of mRNA degradation in the presence of actinomycin D. These studies indicate that production of 25-HC is negatively regulated by testosterone, which may be representative of a paracrine negative-feedback loop.  相似文献   

7.
Six structurally oryzalide-related compounds, oryzadione (1), 2, 3, 4, 5 and 6, were isolated from a neutral fraction of the extract of healthy leaves using a bacterial leaf blight-resistant cultivar of a rice plant, "Norin-27", as a group of antimicrobial substances. Their structures were determined by spectroscopic studies to be kaurane analogues and kaurane analogues conjugated with fatty acids, i.e., 1: ent-15,16-epoxy-kauran-2,3-dione (enol form: ent-15,16-epoxy-2-hydroxy-kauran-1-en-3-one), 2: ent-15,16-epoxy-3beta-hydroxy-kauran-2-one, 3: ent-15,16-epoxy-3-oxa-kauran-2-one, 4: ent-15,16-epoxy-3beta-myristoyloxy-kauran-2-one, 5: ent-15,16-epoxy-3alpha-palmitoyloxy-kauran-2-one, and 6: ent-15,16-epoxy-2beta-palmitoyloxy-kauran-2-one.  相似文献   

8.
Two ent-18-acetoxy-6-oxomanoyl oxides, epimers at C-13, have been prepared from ent-6alpha,8alpha,18-trihydroxylabda-13(16),14-diene (andalusol), isolated from Sideritis foetens, by means of several chemical pathways and a regioselective acylation with Candida cylindracea lipase (CCL). Biotransformation of these 13-epimeric ent-manoyl oxides by Fusarium moniliforme and Neurospora crassa produced mainly ent-1beta- or ent-11alpha-hydroxylations, as well as their deacetylated derivatives, in both epimers. In addition, with the 13-epi substrate N. crassa originated other minor hydroxylations by the ent-alpha face at C-1 or at C-12, whereas an ent-11beta-hydroxyl group, probably originated by reduction of an 11-oxo derivative also isolated, was achieved with the 13-normal substrate.  相似文献   

9.
The Niemann-Pick, Type C1 protein (NPC1) is required for the transport of lipoprotein-derived cholesterol from lysosomes to endoplasmic reticulum. The 1278-amino acid, polytopic membrane protein has not been purified, and its mechanism of action is unknown. Unexpectedly, we encountered NPC1 in a search for a membrane protein that binds 25-hydroxycholesterol (25-HC) and other oxysterols. A 25-HC-binding protein was purified more than 14,000-fold from rabbit liver membranes and identified as NPC1 by mass spectroscopy. We prepared recombinant human NPC1 and confirmed its ability to bind oxysterols, including those with a hydroxyl group on the 24, 25, or 27 positions. Hydroxyl groups on the 7, 19, or 20 positions failed to confer binding. Recombinant human NPC1 also bound [(3)H]cholesterol in a reaction inhibited by Nonidet P-40 above its critical micellar concentration. Low concentrations of unlabeled 25-HC abolished binding of [(3)H]cholesterol, but the converse was not true, i.e. unlabeled cholesterol, even at high concentrations, did not abolish binding of [(3)H]25-HC. NPC1 is not required for the known regulatory actions of oxysterols. Thus, in NPC1-deficient fibroblasts 25-HC blocked the processing of sterol regulatory element-binding proteins and activated acyl-CoA:cholesterol acyltransferase in a normal fashion. The availability of assays to measure NPC1 binding in vitro may further the understanding of ways in which oxysterols regulate intracellular lipid transport.  相似文献   

10.
Interstrand DNA cross-linking has been considered to be the primary action mechanism of cyclophosphamide (CP) and its hydroperoxide derivative, 4-hydroperoxycyclophosphamide (4-HC). To clarify the mechanism of anti-tumor effects by 4-HC, we investigated DNA damage in a human leukemia cell line, HL-60, and its H(2)O(2)-resistant clone HP100. Apoptosis DNA ladder formation was detected in HL-60 cells treated with 4-HC, whereas it was not observed in HP100 cells. 4-HC significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, a marker of oxidative DNA damage, in HL-60 cells. On the other hand, CP did not significantly induce 8-oxodG formation and apoptosis in HL-60 cells under the same conditions as did 4-HC. Using (32)P-labeled DNA fragments from the human p53 tumor suppressor gene, 4-HC was found to cause Cu(II)-mediated oxidative DNA damage, but CP did not. Catalase inhibited 4-HC-induced DNA damage, including 8-oxodG formation, suggesting the involvement of H(2)O(2). The generation of H(2)O(2) during 4-HC degradation was ascertained by procedures using scopoletin and potassium iodide. We conclude that, in addition to DNA cross-linking, oxidative DNA damage through H(2)O(2) generation may participate in the anti-tumor effects of 4-HC.  相似文献   

11.
Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work by using molecular-dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayers to examine the combined effects of 25-HC and cholesterol in the same bilayer. 25-HC causes larger changes in membrane structure when added to cholesterol-containing membranes than when added to cholesterol-free membranes. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and thus increasing its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These effects provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through modulation of cholesterol availability.  相似文献   

12.
Ceriopsins F and G,diterpenoids from Ceriops decandra   总被引:1,自引:0,他引:1  
Anjaneyulu AS  Rao VL 《Phytochemistry》2003,62(8):1207-1211
Chemical examination of the ethyl acetate solubles of the CH(3)OH:CH(2)Cl(2) (1:1) extract of the roots of Ceriops decandra collected from Kauvery estuary resulted in the isolation of two more diterpenoids, ceriopsins F and G (1-2) and five known compounds, ent-13-hydroxy-16-kauren-19-oic acid (steviol, 3), methyl ent-16beta,17-dihydroxy-9(11)-kauren-19-oate (4), ent-16beta,17-dihydroxy-9(11)-kauren-19-oic acid (5), ent-16-oxobeyeran-19-oic acid (isosteviol, 6), 8,15R-epoxypimaran-16-ol (7). The structures of the new diterpenoids were elucidated by a study of their physical and spectral data as methyl ent-13,17-epoxy-16-hydroxykauran-19-oate (1) and ent-16-oxobeyeran-19-al (2).  相似文献   

13.
Chromatographic fractionations of the toluene extract of the heartwood of Excoecaria parvifolia collected in Australia resulted in the isolation of 12 beyerane diterpenes (1-12), and the triterpene, lupeol. Four of the isolated diterpenoids (5-7 and 12) have unusual structures: ent-3-oxa-beyer-15-en-2-one, (5); ent-15,16-epoxy-2-hydroxy-19-norbeyer-1,4-dien-3-one (6); methyl ent-2,4-seco-15,16-epoxy-4-oxo-3,19-dinorbeyer-15-en-2-oate (7); and ent-2,17-dihydroxy-19-norbeyer-1,4,15-trien-3-one (12). The structures were established by spectroscopic analyses, NMR data comparisons with similar diterpenes, and chemical correlations. All the diterpenes are assumed to have the same absolute configuration as the co-occurring (+)-stachenol (4). Diosphenol 2 and nor-lactone 5 exhibited significant potency in bioassays for cytotoxic activity against leukemia cells (L1210). Plausible biosynthetic pathways are proposed to explain the origin of the diterpene metabolites.  相似文献   

14.
Cholesterol plays a variety of significant roles in biological systems. However, the mechanisms by which cholesterol functions remain largely unclear. The enantiomer of cholesterol (ent-cholesterol)—which has identical physical properties, but opposite three-dimensional configuration compared to cholesterol—is a unique tool that can be used to better understand the mechanisms of cholesterol function. We review the literature pertaining to ent-cholesterol, focusing in particular on its use in biological studies.  相似文献   

15.
The generation of a series of analogs of erythromycin A (EryA, 2) is described. In this study, we compared two peptide-based catalysts-one originally identified from a catalyst screen (5) and its enantiomer (ent-5)-for the selective functionalization of EryA. The semi-synthetic analogs were subjected to MIC evaluation with two bacterial strains and compared to unfunctionalized EryA.  相似文献   

16.
Two ent-kaurene diterpenes, ent-16-kaurene-3beta,15beta,18-triol (1) and ent-3-oxo-16-kaurene-15beta,18-diol (2), were isolated from a dichloromethane extract of the bark of Suregada multiflora along with five known diterpenes:ent-16-kaurene-3beta,15beta-diol (3), abbeokutone (4), helioscopinolide A (5), helioscopinolide C (6) and helioscopinolide I (7). Their structures were elucidated on the basis of spectroscopic analysis. Compounds 1-7 possessed appreciable anti-allergic activities in RBL-2H3 cells model with IC50 values ranging from 22.5 to 42.2 microM.  相似文献   

17.
Seven new ent-kauranoid derivatives ent-7alpha,18-dihydroxykaur-16-en-3-one, ent-18-acetoxy-3beta,7alpha-dihydroxykaur-15-en-17-al, ent-3beta-acetoxy-7alpha,18-dihydroxykaur-15-en-17-al, ent-18-acetoxy-3beta,7alpha,17-trihydroxykaur-15-ene, ent-3beta-acetoxy-7alpha,17,18-trihydroxykaur-15-ene, ent-18-acetoxy-3beta,7alpha,17-trihydroxy-15beta,16beta-epoxykaurane and ent-3beta-acetoxy-7alpha,17,18-trihydroxy-15beta,16beta-epoxykaurane have been isolated from Sideritis moorei. The structures of these compounds have been established by spectroscopic means and chemical correlations.  相似文献   

18.
In the search to uncover ethanol's molecular mechanisms, the calcium and voltage activated, large conductance potassium channel (BK) has emerged as an important molecule. We examine how cholesterol content in bilayers of 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE)/sphingomyelin (SPM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) affect the function and ethanol sensitivity of BK. In addition, we examine how manipulation of cholesterol in biological membranes modulates ethanol's actions on BK. We report that cholesterol levels regulate the change in BK channel open probability elicited by 50 mM ethanol. Low levels of cholesterol (<20%, molar ratio) supports ethanol activation, while high levels of cholesterol leads to ethanol inhibition of BK. To determine if cholesterol affects BK and its sensitivity to ethanol through a direct cholesterol-protein interaction or via an indirect action on the lipid bilayer, we used the synthetic enantiomer of cholesterol (ent-CHS). We found that 20% and 40% ent-CHS had little effect on the ethanol sensitivity of BK, when compared with the same concentration of nat-CHS. We accessed the effects of ent-CHS and nat-CHS on the molecular organization of DOPE/SPM monolayers at the air/water interface. The isotherm data showed that ent-CHS condensed DOPE/SPM monolayer equivalently to nat-CHS at a 20% concentration, but slightly less at a 40% concentration. Atomic force microscopy (AFM) images of DOPE/SPM membranes in the presence of ent-CHS or nat-CHS prepared with LB technique or vesicle deposition showed no significant difference in topographies, supporting the interpretation that the differences in actions of nat-CHS and ent-CHS on BK channel are not likely from a generalized action on bilayers. We conclude that membrane cholesterol influences ethanol's modulation of BK in a complex manner, including an interaction with the channel protein. Finally, our results suggest that an understanding of membrane protein function and modulation is impossible unless protein and surrounding lipid are considered as a functional unit.  相似文献   

19.
Microbial metabolism of steviol and steviol-16alpha,17-epoxide   总被引:1,自引:0,他引:1  
Yang LM  Hsu FL  Chang SF  Cheng JT  Hsu JY  Hsu CY  Liu PC  Lin SJ 《Phytochemistry》2007,68(4):562-570
Steviol (2) possesses a blood glucose-lowering property. In order to produce potentially more- or less-active, toxic, or inactive metabolites compared to steviol (2), its microbial metabolism was investigated. Incubation of 2 with the microorganisms Bacillus megaterium ATCC 14581, Mucor recurvatus MR 36, and Aspergillus niger BCRC 32720 yielded one new metabolite, ent-7alpha,11beta,13-trihydroxykaur-16-en-19-oic acid (7), together with four known related biotransformation products, ent-7alpha,13-dihydroxykaur-16-en-19-oic acid (3), ent-13-hydroxykaur-16-en-19-alpha-d-glucopyranosyl ester (4), ent-13,16beta,17-trihydroxykauran-19-oic acid (5), and ent-13-hydroxy-7-ketokaur-16-en-19-oic acid (6). The preliminary testing of antihyperglycemic effects showed that 5 was more potent than the parent compound (2). Thus, the microbial metabolism of steviol-16alpha,17-epoxide (8) with M. recurvatus MR 36 was continued to produce higher amounts of 5 for future study of its action mechanism. Preparative-scale fermentation of 8 yielded 5, ent-11alpha,13,16alpha,17-tetrahydroxykauran-19-oic acid (10), ent-1beta,17-dihydroxy-16-ketobeyeran-19-oic acid (11), and ent-7alpha,17-dihydroxy-16-ketobeyeran-19-oic acid (13), together with three new metabolites: ent-13,16beta-dihydroxykauran-17-acetoxy-19-oic acid (9), ent-11beta,13-dihydroxy-16beta,17-epoxykauran-19-oic acid (12), and ent-11beta,13,16beta,17-tetrahydroxykauran-19-oic acid (14). The structures of the compounds were fully elucidated using 1D and 2D NMR spectroscopic techniques, as well as HRFABMS. In addition, a GRE (glucocorticoid responsive element)-mediated luciferase reporter assay was used to initially screen the compounds 3-5, and 7 as glucocorticoid agonists. Compounds 4, 5 and 7 showed significant effects.  相似文献   

20.
Biotransformation of ent-3beta,12alpha-dihydroxy-13-epi-manoyl oxide with Fusarium moniliforme gave the regioselective oxidation of the hydroxyl group at C-3 and the ent-7beta-hydroxylation. The action of Gliocladium roseum in the 3,12-diketoderivative originated monohydroxylations at C-1 and C-7, both by the ent-beta face, while Rhizopus nigricans produced hydroxylation at C-7 or C-18, epoxidation of the double bond, reduction of the keto group at C-3, and combined actions as biohydroxylation at C-2/epoxidation of the double bond and hydroxylation at C-7/reduction of the keto group at C-3. In the ent-3-hydroxy-12-keto epimers, G. roseum originated monohydroxylations at C-1 and C-7 and R. nigricans originated the oxidation at C-3 as a major transformation, epoxidation of double bond and hydroxylation at C-2. Finally, in the ent-3beta-hydroxy epimer R. nigricans also originated minor hydroxylations at C-1, C-6, C-7 and C-20 and F. moniliforme produced an hydroxylation at C-7 and a dihydroxylation at C-7/C-11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号