首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.  相似文献   

2.
Ikeya K  Kume M 《Zoological science》2011,28(8):545-549
The Mekong giant catfish Pangasianodon gigas is endemic to the Mekong River basin, and is recognized as endangered species, largely due to overfishing and development of the river basin. We monitored food intake of P. gigas in a stable environment in an aquarium over a 6-year period and analyzed their feeding rhythm and fasting periods. The daily food intake for each fish was recorded from 18 June 2004 to 17 June 2010. The feeding rhythm or pattern was determined by the fast Fourier transform (FFT) analysis. The FFT analysis revealed that different cycles of feeding rhythm (168.8, 313.1, and 365.3 days) in three catfishes and no observable cycles in two catfishes. However, three catfishes showed subordinate peaks with approximately 365 days (365.3 days for all). These suggest that, at least, four of five catfish had have approximately 365-days feeding cycle. We also showed that all catfish undergo long-term fasting periods (> 20 days). Of note, the feeding/fasting pattern coincides with the wet/dry seasons in Thailand, which also corresponds to the abundance of the catfish food resource (Cladophora spp.). We found that P. gigas exhibit a seasonal feeding rhythm that is synchronized by food availability. Furthermore, we found that the seasonal feeding rhythm was gradually dampened over time, suggesting that the observed seasonal feeding rhythm with long-term fasting of the catfish is likely controlled by an endogenous clock system. To our knowledge, this is the first case of quantification of the seasonal feeding rhythm with fasting periods in teleost fish.  相似文献   

3.
The relationship between ultradian rhythm of heart rate and schedules of body contact or feeding was studied in five low birth weight infants of conceptional ages of 34-36 weeks. The differential contribution of body contact and feeding to the formation of the ultradian rhythm of heart rate was evaluated by applying two different schedules of two- and three-hour periods for feeding with a single schedule of three hours for body contact during an observation period of seven days. A chi-square periodogram was used to calculate the period of ultradian rhythm. As a result, a three-hour ultradian rhythm of heart rates was detected in all subjects, which seems to correspond to either schedule of body contact or of feeding. However, no clear changes in the ultradia n rhythm of heart rate were observed corresponding to changes in feeding schedules. The ultradian rhythm of heart rate seems to correspond more to body contact than to feeding.  相似文献   

4.
The relationship between ultradian rhythm of heart rate and schedules of body contact or feeding was studied in five low birth weight infants of conceptional ages of 34-36 weeks. The differential contribution of body contact and feeding to the formation of the ultradian rhythm of heart rate was evaluated by applying two different schedules of two- and three-hour periods for feeding with a single schedule of three hours for body contact during an observation period of seven days. A chi-square periodogram was used to calculate the period of ultradian rhythm. As a result, a three-hour ultradian rhythm of heart rates was detected in all subjects, which seems to correspond to either schedule of body contact or of feeding. However, no clear changes in the ultradia n rhythm of heart rate were observed corresponding to changes in feeding schedules. The ultradian rhythm of heart rate seems to correspond more to body contact than to feeding.  相似文献   

5.
Effects of meal feeding schedule and bilateral lesions of the ventromedial hypothalamus (VMH) on the circadian rhythm of pineal serotonin N-acetyltransferase (SNAT) activity were examined in rats, under LD (12:12) condition. Neither meal feeding nor VMH lesions affected the phase of the circadian rhythm of pineal SNAT activity, but the VMH lesions reduced the level. Meal feeding caused a shift of the phases of the daily rhythms of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase activities in the liver. These findings suggest that the circadian rhythm of pineal SNAT activity is not entrained by the food intake, and that the VMH does not function as a master oscillator of the rhythm.  相似文献   

6.
In non-human primates, the daily feeding rhythm, i.e., temporal fluctuation in feeding activity across the day, has been described but has rarely received much analytical interpretation, though it may play a crucial part in understanding the adaptive significance of primate foraging strategies. This study is the first to describe the detailed daily feeding rhythm in proboscis monkeys (Nasalis larvatus) based on data collected from both riverbank and inland habitats. From May 2005 to May 2006, data on feeding behavior in a group of proboscis monkeys consisting of an alpha-male, six adult females and immatures was collected via continuous focal animal sampling technique in a forest along the Menanggul River, Sabah, Malaysia. In both the male and females, the highest peak of feeding activity was in the late afternoon at 15:00–17:00, i.e., shortly before sleeping. The differences in the feeding rhythm among the seasons appeared to reflect the time spent eating fruit and/or the availability of fruit; clearer feeding peaks were detected when the monkeys spent a relevant amount of time eating fruit, but no clear peak was detected when fruit eating was less frequent. The daily feeding rhythm was not strongly influenced by daily temperature fluctuations. When comparing the daily feeding rhythm of proboscis monkeys to that of other primates, one of the most common temporal patterns detected across primates was a feeding peak in the late afternoon, although it was impossible to demonstrate this statistically because of methodological differences among studies.  相似文献   

7.
The effects of the time of day of drug administration on the subchronic toxicity and pharmacokinetics of gentamicin, as well as the role of feeding schedule on circadian rhythms, were investigated in mice. ICR male mice were housed in a light-dark (LD) cycle (12:12) with food and water ad libitum (ALF) or under a time-restricted feeding (TRF) schedule (feeding time: 8 h during the light phase) for 1 day or 14 days before drug administration. The animals were given a single subcutaneous dose of gentamicin 180 mg/kg for the kinetic studies and subcutaneous doses of gentamicin 180 mg/kg/day for 14 days or 220 mg/kg/day for 18 days for the subchronic toxicity studies. A significant dosing-time dependency was shown for mortality and body weight loss, with higher values at midlight and lower ones at the middark (p > 0.05). A significant circadian rhythm was also found for gentamicin kinetics in ALF mice, with the highest clearance at middark and the lowest one at midlight (p > 0.01). The kinetic rhythm of gentamicin coincided well with the toxicity rhythm of the drug. The TRF schedule had a marked influence on the rhythms of gentamicin kinetics and toxicity, showing lowest clearance and higher toxicity at middark. The rhythm of subchronic toxicity of gentamicin seems to be due, at least in part, to the rhythm in kinetics and is strongly influenced by the feeding schedule. Thus, the timing of dosing is an important factor in the kinetics and the subchronic toxicity of gentamicin administration in mice, and the manipulation of feeding schedule can modify the rhythm of the toxicity by changing the rhythm of gentamicin kinetics.  相似文献   

8.
食蚊鱼昼夜摄食节律观察   总被引:3,自引:0,他引:3  
以分时段采样法研究入侵物种食蚊鱼的夏季昼夜摄食节律。食蚊鱼夏季种群内有雌鱼、雄鱼和幼鱼三个不同的摄食类群,这三个类群的摄食节律差异明显。雌鱼摄食节律成双峰型,第一高峰在10:00,而最高峰在22:00,此时肠道食物团平均重量11.70±11.60mg,饱满指数为190.22±155.61。幼鱼也成双峰型,分别在6:00和18:00有两个摄食高峰,以清晨6:00为最高,肠道食物团平均重1.08±1.09mg,饱满指数为128.44±105.49。雄鱼则成单峰型,摄食高峰出现午后14:00左右,肠道食物团平均重0.71±0.96mg,饱满指数为71.80±107.65。食蚊鱼不同摄食类群间的摄食高峰交错出现,是其协调种内关系,降低种内竞争的一种有效行为机制。  相似文献   

9.
There is increasing awareness of the link between impaired circadian clocks and multiple metabolic diseases. However, the impairment of the circadian clock by type 2 diabetes has not been fully elucidated. To understand whether and how the function of circadian clock is impaired under the diabetic condition, we examined not only the expression of circadian genes in the heart and pineal gland but also the behavioral rhythm of type 2 diabetic and control rats in both the nighttime restricted feeding (NRF) and daytime restricted feeding (DRF) conditions. In the NRF condition, the circadian expression of clock genes in the heart and pineal gland was conserved in the diabetic rats, being similar to that in the control rats. DRF shifted the circadian phases of peripheral clock genes more efficiently in the diabetic rats than those in the control rats. Moreover, the activity rhythm of rats in the diabetic group was completely shifted from the dark phase to the light phase after 5 days of DRF treatment, whereas the activity rhythm of rats in the control group was still under the control of the suprachiasmatic nucleus (SCN) after the same DRF treatment. Furthermore, the serum glucose rhythm of type 2 diabetic rats was also shifted and controlled by the external feeding schedule, ignoring the SCN rhythm. Therefore, DRF shows stronger effect on the reentrainment of circadian rhythm in the type 2 diabetic rats, suggesting that the circadian system in diabetes is unstable and more easily shifted by feeding stimuli.  相似文献   

10.

Background

The loss of diurnal rhythm in blood pressure (BP) is an important predictor of end-organ damage in hypertensive and diabetic patients. Recent evidence has suggested that two major physiological circadian rhythms, the metabolic and cardiovascular rhythms, are subject to regulation by overlapping molecular pathways, indicating that dysregulation of metabolic cycles could desynchronize the normal diurnal rhythm of BP with the daily light/dark cycle. However, little is known about the impact of changes in metabolic cycles on BP diurnal rhythm.

Methodology/Principal Findings

To test the hypothesis that feeding-fasting cycles could affect the diurnal pattern of BP, we used spontaneously hypertensive rats (SHR) which develop essential hypertension with disrupted diurnal BP rhythms and examined whether abnormal BP rhythms in SHR were caused by alteration in the daily feeding rhythm. We found that SHR exhibit attenuated feeding rhythm which accompanies disrupted rhythms in metabolic gene expression not only in metabolic tissues but also in cardiovascular tissues. More importantly, the correction of abnormal feeding rhythms in SHR restored the daily BP rhythm and was accompanied by changes in the timing of expression of key circadian and metabolic genes in cardiovascular tissues.

Conclusions/Significance

These results indicate that the metabolic cycle is an important determinant of the cardiovascular diurnal rhythm and that disrupted BP rhythms in hypertensive patients can be normalized by manipulating feeding cycles.  相似文献   

11.
Abstract

The possible endogenous circadian rhythm in the feeding activity of rainbow trout (Oncorhynchus mykiss) was investigated using individual fish previously trained for self‐feeding. Under LD 12:12 conditions, the fish showed a diurnal behaviour, in many cases with a feeding rhythm with two main peaks of food demand at dawn and dusk, with an 8h interval of low feeding activity, and the actograms showed an expected 24 h rhythm. Fish kept under constant conditions (L : L, 15°±0.5°C), showed free‐running feeding activity for about 12 days. Food demands were concentrated at dawn, with a periodogram of 25.3 hour, under continuous environmental conditions. Results showed evidence for the endogenous origin of the circadian rhythm of feeding in this species.  相似文献   

12.
The suprachiasmatic nuclei (SCN) generate the circadian rhythm of many hormones. The hormone leptin is a metabolic signal that informs the brain about fat and energy stores of the body. We investigated whether the rhythm of leptin hormone release in Syrian hamsters is directly controlled by the SCN. Three experiments were performed: in the first, hamsters were SCN‐lesioned; in the second, hamsters were exposed to different feeding regimes; and in the third, hamsters were adrenalectomized and implanted with cortisol capsules to maintain constant glucocorticoid release. Blood samples were collected before and after the experiments at different clock times and examined for leptin levels by enzyme‐linked immunosorbant assay (ELISA). Different feeding regimes and constant glucocorticoid release did not alter the rhythm of leptin release; whereas, SCN lesions abolished the rhythm. The results of the present study suggest the rhythm in leptin release in Syrian hamsters may be controlled by the SCN.  相似文献   

13.
Abstract.  The present study tested whether the pattern of feeding activity in the firebug Pyrrhocoris apterus (L.) is sex- and wing morph-related, diurnal or nocturnal, as well as whether the feeding rhythm persists in constant darkness. Temporal patterns of feeding activity are analysed in macropterous and brachypterous adults reared under long-day (LD 18 : 6 h) and short-day (LD 12 : 12 h) photoperiods, and in adults transferred to constant darkness. In females, the total feeding activity is highest in long-day reproductively active brachypters, intermediate in short-day diapausing brachypters, and lowest in macropters; the differences among males are substantially smaller. Although the total feeding activity of macropterous males is higher than in macropterous females, no sex-related differences are found in feeding activity of diapausing and reproductively active brachypters. The frequency of feeding exhibits sex-related differences, with obviously higher values in males. Mean feeding periods of macropterous and reproductively active brachypterous males are shorter than in females of the same wing morph. Mean interfeeding periods are longest in macropters, intermediate in diapausing brachypters, and shortest in reproductively active brachypters, and always lower in males than in females. The study shows that the feeding activity of P. apterus adults is age-, sex- and wing morph-related, and exhibits a diurnal pattern, except in reproductively active brachypterous females. The latter do not express a clear diurnal rhythm of feeding, presumably because of interactions with cycles of egg development and oviposition. The persistence of diurnal rhythm of feeding activity in short-day brachypterous females transferred to constant darkness indicates an endogeneity of this rhythm in P. apterus .  相似文献   

14.
The suprachiasmatic nuclei (SCN) generate the circadian rhythm of many hormones. The hormone leptin is a metabolic signal that informs the brain about fat and energy stores of the body. We investigated whether the rhythm of leptin hormone release in Syrian hamsters is directly controlled by the SCN. Three experiments were performed: in the first, hamsters were SCN-lesioned; in the second, hamsters were exposed to different feeding regimes; and in the third, hamsters were adrenalectomized and implanted with cortisol capsules to maintain constant glucocorticoid release. Blood samples were collected before and after the experiments at different clock times and examined for leptin levels by enzyme-linked immunosorbant assay (ELISA). Different feeding regimes and constant glucocorticoid release did not alter the rhythm of leptin release; whereas, SCN lesions abolished the rhythm. The results of the present study suggest the rhythm in leptin release in Syrian hamsters may be controlled by the SCN.  相似文献   

15.
The aim of these experiments was to test the effect of a cyclic administration of melatonin, by mimicking the daily rhythm of hormone levels, on the circadian organization of two distinct functions in quail: oviposition and feeding activity. Laying and feeding rhythms under photoperiodic conditions and constant darkness (DD) were investigated. Under DD, where the two rhythms were free running, a daily rhythm of melatonin was administered. In LD 14h:10h, two different individual profiles of laying were established, with stable females laying at the same time each day and delayed females laying progressively later each day. For feeding activity, all birds were clearly synchronized to the photoperiodic cycle. In DD, the laying birds showed a free-running rhythm of oviposition with a period longer than 24 h for both profiles but the delayed profile females had a longer period than stable profile females. In comparison, the free-running period of feeding rhythm of the same birds was shorter than 24 h. A cyclic administration of melatonin had no effect on laying rhythm, which continued to free-run in DD, whereas feeding activity was synchronized as soon as the first cycle of melatonin was administered. From these results, it seems that two different circadian systems drive each of the two types of behavior separately. Melatonin could be the main synchronizer for the temporal control of feeding behavior, but it does not play a part in the control of oviposition in Japanese quail.  相似文献   

16.
In the free-running circadian locomotor activity rhythm of a 7-year-old male owl monkey (Aotus lemurinus griseimembra) kept under constant light and climatic conditions (LL 0.2 lux, 25°C ± 1°C, 60 ± 5% relative humidity [RH]), a second rhythm component developed that showed strong relative coordination with the free-running activity rhythm of 24.4h and a 24h rhythm. The simultaneously recorded feeding activity rhythm strongly resembled this rhythm component. Therefore, it seems justified to infer that there was an internal desynchronization between the two behavioral rhythms or their circadian pacemakers, that is, between the light-entrainable oscillator located in the suprachiasmatic nuclei (SCN) and a food-entrainable oscillator located outside the SCN. This internal desynchronization may have been induced and/or maintained by a zeitgeber effect of the (irregular) 24h feeding schedule on the food-entrainable oscillator. The weak relative coordination shown by the activity rhythm indicates a much weaker coupling of the light-entrainable oscillator to the food-entrainable oscillator than vice versa. (Chronobiology International, 17(2), 147-153, 2000)  相似文献   

17.
2017年10月-2018年9月,采用瞬时扫描法和目标取样法对南京市红山森林动物园高淳湿地研究中心的南黄颊长臂猿Nomascus gabriellae季节性活动节律进行观察研究,共计扫描4 369次,观察时间累计1 092 h,得到行为数据26 208个,将其行为划分为取食、休息、运动、社会、交配和其他6种。结果表明,休息和运动是南黄颊长臂猿各季节的主要行为类型,其次为取食和社会行为。各行为在不同季节具有明显的节律性,休息一般出现在晨昏和正午;而运动一般出现在上午和下午;取食在各季节存在2个明显高峰,受饲养员喂食时间和频次的影响较大,表现为休息-运动-取食-休息-运动-取食-休息的行为模式。Kruskal-Wallis H分析结果显示,南黄颊长臂猿在不同季节和相同季节不同时段的行为差异有统计学意义:秋、冬季的取食行为明显高于春、夏季,而休息和运动相反。温度、日照、天气、游客量、饲养员日常操作等均影响南黄颊长臂猿的活动节律。  相似文献   

18.
The neural circuitry underlying generation of rhythmic feedingmovements in Lymnaea stagnalis has been described in detail.Three types of higher order inter-neurone modulate the outputof the feeding rhythm generator. When stimulated, the Slow Oscillatorand Cerebral Ventral 1 interneurones initiate and maintain patternedmotor output. The serotonergic Cerebral Giant Cells (CGCs) canalso initiate the rhythm, but may suppress or abolish an ongoingrhythm. Application of serotonin to the central nervous systemmimicks the effects of stimulating the CGCs. Another monoamine,dopamine, reliably activates the feeding rhythm generator. Otherneuroactive substances, acetylcholine and FMRFamide, inhibitrhythmic motor output. The variety of routes by which feeding motor output may be controlledexperimentally suggests that the system is highly flexible.This would allow for adaptation to a range of sensory environments.  相似文献   

19.
Mouse eosinophils undergo circadian fluctuation, and the phasing of the rhythm normally is synchronized to the environmental light-dark cycle if food always is available. This study was undertaken to determine whether or not the same rhythm could be synchronized to restricted feeding schedules. It was found that if food is available ad libitum for only short spans (in this case, 4 h during each 24 h period), the rhythm becomes synchronized to the feeding schedule. In addition, restricting food to certain 4 h spans causes the amplitude of the eosinophil rhythm to increase significantly over that of normal, light-dark synchronized animals. Not all rhythmic variables synchronize to restricted feeding schedules. Some remain synchronized to the light-dark cycle; the phasing of others seems to be the result of an interaction between both the light-dark cycle and the feeding schedule. These studies help dispel the popular misconception that all body functions react in the same manner to different synchronizers and emphasize that one must not generalize about the synchronizing effect of feeding or lighting.  相似文献   

20.
Daily rhythms of body core temperature and liver function were recorded in goats maintained under various schedules of lighting and feeding. Concentration of urea in the blood was used as an index of digestion-driven hepatic activity, whereas concentration of cholesterol served as an index of autonomous hepatic activity. Body temperature exhibited robust circadian rhythmicity in the presence and absence of a light-dark cycle and/or a feeding regime. The rhythm was more responsive to shifts in feeding time than to shifts in the light-dark cycle. Urea concentration in the blood exhibited daily rhythmicity only in the presence of a daily feeding regime and, therefore, was driven by ingestive and digestive processes. The rhythm of cholesterol concentration persisted in the presence or absence of a light-dark cycle and/or a feeding regime, except when the feeding time was shifted under constant light. However, the cholesterol rhythm did not respond either to shifts in the light-dark cycle or, more importantly, to shifts in feeding time. Thus, based on this index of hepatic function, the liver cannot be identified as the site of the putative food-entrainable pacemaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号