首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Regulation by the active form of phytochrome (PFR) and the effect of Ca2+ was examined with nitrate reductase (NR) in etiolated cucumber ( Cucumis sativus cv. Beilpuig). Nitrate reductase activity (NRA) was studied in excised cotyledons of cucumber seedlings grown in distilled water and in darkness for seven days at 24 ± 0.5°C. All experiments were performed in the dark and a dim green safelight was used during analyses. In etiolated cucumber cotyledons NRA was induced by nitrate and a brief irradiation (15 min) with red light (R) resulted in 62% increase in NRA. This effect was nullified when R was followed immediately by a brief (5 min) far-red light (FR). NRA also showed a semidian (12 h) rhythmicity. Both PFR, and nitrate effects were age dependent. Calcium seemed to be involved since the phytochrome effect was only observed when calcium was supplied in the external solution. The effect of R on NRA depended on the period of calcium nitrate incubation. An external supply of calcium ionophore mimicked the effect of R and, if supplied to R-irradiated cotyledons, produced a higher NR level than that caused by R alone. This suggested that intracellular free calcium was involved.  相似文献   

3.
Radish (Raphanus sativus L.) seedlings pretreated with different hormones viz. kinetin, gibberellic acid and abscisic acid were subjected to different N-forms. The seedlings were treated with different concentrations of KNO3, NH4Cl and NH4NO3 and the changes in nitrate reductase activity were seen in light and dark conditions in the cotyledons. Nitrate reductase activity was affected differently by hormone application. Nitrate increased and ammonia decreased nitrate reductase activity; in both light and dark-grown seedlings KNO3 induced more in vitro nitrate reductase activity. NH 4 + when combined with NO 3 , however, could level up to some extent, with KNO3 in light, except in kinetin. A transient response of induction of NR activity was evident with decreased levels after a certain specific ambient N-concentration, despite the presence of high N in the medium. However, the pattern of transition varied with the hormones applied. Further, hormones are found to affect induction of different isoforms of nitrate reductase by NH 4 + and NO 3 . NH 4 + induced isoform was prominently promoted by kinetin treatment in dark. The data documents a particular kind of interaction between controlling factors (light, N-source and phytohormones) which affect nitrate reductase levels.  相似文献   

4.
Nitrate reductase and its role in nitrate assimilation in plants   总被引:16,自引:0,他引:16  
Nitrate reductase (EC 1.6.6.1) is an enzyme found in most higher plants and appears to be a key regulator of nitrate assimilation as a result of enzyme induction by nitrate. The biochemistry of nitrate reductase has been elucidated to a great extent and the role that nitrate reductase plays in regulation of nitrate assimilation is becoming understood.  相似文献   

5.
Growth and nitrate reductase activity were measured in Paul's Scarlet rose cell suspensions, cultured in media purified from molybdenum and containing nitrate or urea as sole nitrogen source with or without added Mo. Urea could replace nitrate to yield 80% of the fresh weight in nitrate medium. Nitrate reductase activities were compared by in vivo and in vitro assays. The latter varied due to inactivation during extraction. Compared with activities in cells in complete NO3 - medium, activity in NO3 --Mo cells was reduced to 30% and, in urea-grown cells, to trace amounts. Increases in nitrate reductase activity were found when NO3 - alone was added to NO3 - or urea+Mo cultures. In NO3 --Mo cultures, Mo alone or with NO3 - caused a similar increase in activity, whereas urea-Mo cultures required both NO3 - and Mo for enzyme induction.Abbreviations FAD flavin adenine dinucleotide - Mo molybdenum - NADH reduced nicotinamide adenine dinucleotide - NO3 -+Mo standard MX1 culture medium - NO3 --Mo MX1 medium purified of Mo and used for continuous subculture with nitrate - NR nitrate reductase - PSR Paul's Scarlet rose - PVP polyvinylpyrrolidone - U urea - U+Mo MX1 medium containing urea instead of nitrate - U-Mo MX1 medium containing urea instead of nitrate and also purified of Mo  相似文献   

6.
辛国荣  李剑  杨中艺 《生态科学》2011,30(5):474-479
研究以水田冬闲期栽培的意大利黑麦草(Lolium multiflorum)为材料,结合常规的青贮方法进行了小规模控制实验,试验设计了隔水(将青贮过程中产生的渗出液排出)和不隔水,以及不同添加物的青贮处理.青贮结束后,对青贮黑麦草的品质和营养价值进行评定,探讨不同处理对黑麦草青贮的作用效果,以及南方高温高湿条件下青贮黑麦草的合理方法和最佳条件.结果发现,对黑麦草进行隔水添加乳酸的青贮处理从感观评定、pH值和营养成分的分析结果来看,都在一定程度上优于其他处理,由此可以认为隔水添加乳酸的处理相对实现了较稳定和较优质的青贮.  相似文献   

7.
8.
Abstract Respiratory nitrate reductase from the denitrifying bacterium Pseudomonas stutzeri is an iron-sulfur enzyme containing the molybdenum cofactor. Hydrolysis of native nitrate reductase with aqueous sulfuric acid revealed 0.92 mol of 5'-GMP per mol of enzyme. The pterin present in the molybdenum cofactor was liberated from the protein and reacted with iodoacetamide. The resulting di(carboxamidomethyl) (cam) derivative was purified on a C18-cartridge and analyzed for its structural elements. Treatment of the cam derivative with nucleotide pyrophosphatase and subsequent HPLC analysis revealed the formation of di(cam)molybdopterin and 5'-GMP at a 1:1 molar ratio and with a yield of 79% with respect to the molybdenum content of the enzyme. Treatment of the cam derivative with nucleotide pyrophosphatase and alkaline phosphatase led to the liberation of 0.51 mol dephosphodi(cam)molybdopterin and of 0.59 mol guanosine per mol of enzyme, which is equal to a molar ratio of 1:2.2. The results indicate, that the organic moiety of the molybdenum cofactor of nitrate reductase from P. stutzeri is molybdopterin guanine dinucleotide of which one mol is contained per mol of nitrate reductase.  相似文献   

9.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

10.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

11.
Abstract. The 15N isotope was used to compare the uptake and the assimilation of NH4+ and NO3 nitrogen in ryegrass ( Lolium perenne L.) during regrowth after cutting. Uptake of nitrate-N, expressed per plant, was at all times greater than ammonium-N uptake and assimilation decreased in roots and stubble while its assimilation was maintained at a high level in leaves. It has been suggested that ammonium assimilation is directly related to the availability of carbohydrates in the sink organ (leaves) resulting from their remobilization from the source organs (roots and stubble). Nitrate reduction decreased in all organs, while the uptake of NO3 was still high. After this first period of regrowth, nitrogen assimilation both from nitrate and ammonium increased in all the plants. Nitrate reduction capacity (expressed in μg NO3-N reduced per g D.W. per d) is 7.5 and 22.5 times greater in leaves than in stubble and roots, respectively. Therefore, nitrogen assimilation in stubble and particularly in roots was mainly dependent on ammonium nitrogen.  相似文献   

12.
Moderate levels of N were toxic to the native Australian plant boronia (Boronia megastigma Nees). As NO-3 is the major N form available for plants under cultivated conditions, NO-3 reduction and accumulation patterns in boronia were examined following the supply of various levels of NO-3 to understand the physiological basis of this toxicity. At a low level of supplied NO-3 [15 mmol (plant)-1], NO-3 was reduced without any detectable accumulation and without nitrate reductase activity (NRA) reaching its maximum capacity. When higher NO-3 levels [≥25 mmol (plant)-1] were supplied, both NRA and NO-3 accumulation increased further. However, NRA increased to a maximum of ca 500 nmol NO-3 (g fresh weight)-1 h-1, both in the roots and leaves, irrespective of a 4-fold difference in the levels of supplied NO-3, whereas NO-3 continued to accumulate in proportion to the level of supplied NO-3. Chlorotic toxicity symptoms appeared on the leaves at an accumulation of ca 32 μmol NO-3 (g fresh weight)-1. High endogenous NO-3 concentrations inhibited NRA. The low level of NRA in boronia was not limited by NO-3 or electron donor availability. It is concluded that the low NR enzyme activity is a genetic adaptation to the low NO-3 availability in the native soils of boronia. Thus, when NO-3 supply is high, the plat cannot reduce it at high rates, leading to large and toxic accumulations of the ion in the leaf tissues.  相似文献   

13.
14.
The activity of nitrate reductase in tomato fruits (Lycopersicon esculentum Mill.) grown in vivo and in vitro was similar throughout development. Enzyme activity was directly correlated with fruit size. As has been shown in vivo, nitrate reductase activity was also inducible in fruits grown in vitro.  相似文献   

15.
The NADH: nitrate reductase from durum wheat leaves was inactivated by cyanide and its activity restored by thiosulphate and beef kidney rhodanese. Rhodanese and thiosulphate, added to NADH-nitrate reductase before cyanide treatment protected NADH-nitrate reductase activity. No oxidizing agent was required for the protection or restoration of cyanide treated NADH-nitrate reductase.  相似文献   

16.
Fructan and cryoprotection in ryegrass (Lolium perenne L.)   总被引:6,自引:3,他引:3  
  相似文献   

17.
Nitrogen (N) limits plant productivity and its uptake and assimilation may be regulated by N source, N availability, and nitrate reductase activity (NRA). Knowledge of how these factors interact to affect N uptake and assimilation processes in woody angiosperms is limited. We fertilized 1-year-old, half-sib black walnut (Juglans nigra L.) seedlings with ammonium (NH4 +) [as (NH4)2SO4], nitrate (NO3 ) (as NaNO3), or a mixed N source (NH4NO3) at 0, 800, or 1,600 mg N plant−1 season−1. Two months following final fertilization, growth, in vivo NRA, plant N status, and xylem exudate N composition were assessed. Specific leaf NRA was higher in NO3 -fed and NH4NO3-fed plants compared to observed responses in NH4 +-fed seedlings. Regardless of N source, N addition increased the proportion of amino acids (AA) in xylem exudate, inferring greater NRA in roots, which suggests higher energy cost to plants. Root total NRA was 37% higher in NO3 -fed than in NH4 +-fed plants. Exogenous NO3 was assimilated in roots or stored, so no difference was observed in NO3 levels transported in xylem. Black walnut seedling growth and physiology were generally favored by the mixed N source over NO3 or NH4 + alone, suggesting NH4NO3 is required to maximize productivity in black walnut. Our findings indicate that black walnut seedling responses to N source and level contrast markedly with results noted for woody gymnosperms or herbaceous angiosperms.  相似文献   

18.
Induction and growth of soybean callus cultures were influenced by NaCl, especially at the highest concentration tested (150 mM). Protein content was raised as NaCl was increased in the Murashige and Skoog medium. Total sulfhydryl group (-SH) and glutathione (GSH) concentrations were also increased in NaCl treated cultures. The affinity (Km) of glutathione reductase (GR) for oxidized glutathione (GSSG) was gradually increased as NaCl level was raised in the medium. The GSH/GSSG ratio was raised significantly as the result of GR activity. The increase in GR activity may constitute an adaptive response of soybean callus to NaCl. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine ( Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.  相似文献   

20.
A study was conducted to elucidate the effect of N form, either NH4 + or NO3 , on growth and solute composition of the salt-tolerant kallar grass [Leptochloa fusca (L.) Kunth] grown under 10 mM or 100 mM NaCl in hydroponics. Shoot biomass was not affected by N form, whereas NH4 + compared to NO3 nutrition caused an almost 4-fold reduction in the root biomass at both salinity levels. Under NH4 + nutrition, salinity had no effect on the biomass yield, whereas under NO3 nutrition, increasing salinity from 10 mM to 100 mM caused 23% and 36% reduction in the root and shoot biomass, respectively. The reduced root growth under NH4 + nutrition was not attributable to impaired shoot to root C allocation since N form did not affect the overall root sugar concentration and the starch concentration was even higher under NH4 + compared to NO3 nutrition. The low NH4 + (2 mM) and generally higher amino-N concentrations in NH4 +- compared to NO3 -fed plants indicated that the grass was able to effectively detoxify NH4 +. Salinity had no effect on Ca2+ and Mg2+ levels, whereas their concentration in shoots was lower under NH4 + compared to NO3 nutrition (over 66% reduction in Ca2+; over 20% reduction in Mg2+), but without showing deficiency symptoms. Ammonium compared to NO3 nutrition did not inhibit K+ uptake, and the K+-Na+ selectivity either remained unaffected or it was higher under NH4 + than under NO3 nutrition. Results suggested that while NH4 + versus NO3 nutrition substantially reduced root growth, and also strongly modified anion concentrations and to a minor extent concentrations of divalent cations in shoots, it did not influence salt tolerance of kallar grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号