首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The requirement of protein synthesis for amoebo-flagellate transformation of Physarum polycephalum was re-examined. When amoebae were grown on nutrient agar in association with live food bacteria and harvested in mid-exponential phase of growth, it took ca. 2 hours for half the cells to form flagella after suspension in phosphate buffer. The transformation was completely inhibited by 5 μg/ml cycloheximide. To the contrary, when the amoebae in mid-exponential phase were starved for 3 hr on non-nutrient agar and then suspended in phosphate buffer, the duration required for this process was shortened to ca. 8 min and it was not inhibited by up to 100 μg/ml cycloheximide. A similar result was obtained using bactobolin, another inhibitor of protein synthesis. When amoebae were starved on non-nutrient agar containing 5 μg/ml cycloheximide, however, the starvation effect described above was not observed. The results indicate that protein(s) necessary for the transformation might be synthesized during the starvation period, and that the amoebo-flagellate transformation may or may not require concomitant protein synthesis depending upon preculture conditions.  相似文献   

2.
The intracellular distribution and level of acid hydrolases in Ochromonas malhamensis were studied in cells grown osmotrophically in a defined medium, in a carbon-free starvation medium, and during phagotrophy in each of these media. By cytochemical techniques, little enzymic reaction product was observed in the vacuoles of osmotrophic cells grown in the defined medium. Starved cells, however, contained autophagic vacuoles and cannibalized other Ochromonas cells. Dense enzymic reaction product was observed in the digestive vacuoles and in the Golgi cisternae of these starved cells. Moreover, starved cells and cells grown in a nutritionally complete medium ingested Escherichia coli which appeared in digestive vacuoles containing enzymic reaction product. Biochemical assays for lysosomal acid phosphatase (E.C. 3.1.3.2 orthophosphoric monoester phosphohydrolase) and acid ribonuclease (E.C. 2.7.7.16 ribonucleate nucleotido-2'-transferase) were done on Ochromonas cultures in the same experimental treatments and under identical assay conditions as the cytochemical study. During starvation, the acid hydrolase specific activities were consistently twice those found in cells grown in an osmotrophic complete medium. Ochromonas fed E. coli showed no increase in acid hydrolase specific activity as compared to controls not fed E. coli. The latency of lysosomal acid hydrolases in cells fixed with glutaraldehyde was reduced, suggesting that this fixative increases lysosomal membrane permeability and may release enzymes or their reaction products into the cytoplasmic matrix during cytochemical analysis. This could explain the cytoplasmic staining artifact sometimes observed with glutaraldehyde-fixed cells when studied by the Gomori technique. This study confirms that Ochromonas malhamensis, a phytoflagellate, does produce digestive vacuoles and can ingest bacteria, thereby fulfilling its role as a heterotroph in an aquatic food chain. When Ochromonas is grown in a nutritionally complete osmotrophic medium, phagocytosis causes appearance of acid hydrolases in the digestive vacuoles, whereas the total activity of the enzymes remains unchanged. An organic carbon-free medium strongly stimulates acid hydrolaes activity and causes these enzymes to appear in the digestive vacuoles whether phagocytosis occurs or not.  相似文献   

3.
The uptake of nucleosides and the synthesis of RNA in Tetrahymena thermophila were examined following amino acid starvation. Omission of leucine, phenylalanine, or arginine from the medium resulted in a rapid decrease in the incorporation of [3H]uridine into the acid-soluble pool and acid-insoluble material (RNA). Amino acid starvation inhibited the uptake of all ribo- and deoxyribonucleosides tested but did not affect the uptake of amino acids or glucose. In addition, under the conditions used, the omission of an amino acid did not result in a large decrease in amino acid incorporation into total protein. Treatment of cells with cycloheximide or emetine gave results similar to the effects of amino acid starvation, but in these experiments the inhibition of protein synthesis was essentially complete. Nucleotide pool sizes were also measured following amino acid starvation. ATP and UTP levels were essentially unchanged, but the dTTP pool size was decreased by 40%. The decrease in RNA synthesis in vivo in the absence of an essential amino acid was reflected in the endogenous RNA synthetic activity of isolated nuclei. However, when solubilized RNA polymerase activity was measured with calf thymus DNA as template, no significant difference was observed between control and amino acid-starved cells.  相似文献   

4.
SYNOPSIS. The kinetics of transfer of tritium-labeled material from the DNA of ingested bacteria into macronuclear DNA of Paramecium was examined by autoradiography. Bacteria labeled with tritiated thymidine were almost immediately incorporated into food vacuoles, thus becoming available for digestion and a potential source of labeled DNA precursors. Soluble label derived from food vacuoles appeared in low concentrations in the cytoplasm soon after cells were transferred to medium with labeled bacteria; incorporation of labeled precursors into macronuclear DNA began within 5 min. Labeled food vacuoles remained as potential sources of tritiated DNA precursors for a long and variable period after removal of labeled cells to non-labeled medium. The activity of the soluble cytoplasmic DNA precursors decreased parallel to the loss of labeled food vacuoles and no soluble DNA precursors were carried over from one macronuclear DNA synthetic period to the next. Labeling experiments were designed, using this information, which allowed determination of the pattern of macronuclear DNA synthesis and nuclear mass increase during the cell cycle. Macronuclear DNA synthesis began 25–30% of the way thru the cell cycle, continued at a constant rate during the middle half, and decreased in rate during the last quarter. Macronuclear mass increased in an approximately linear fashion, beginning with the onset of DNA synthesis and doubling by the time of karyokinesis.  相似文献   

5.
SYNOPSIS. Density of prey (Paramecium aurelia) and predator (Amoeba proteus) were varied while volume of inorganic medium was kept constant. Variations in density of prey had little effect on the rates of feeding and reproduction of the amoebae; but with increasing predator density the amoebae captured the paramecia less rapidly and ingested fewer before dividing, altho division size did not change appreciably. Therefore, amoebae of a low density population with a constant food supply carry more nutritional reserves from generation to generation than do those in a denser population.  相似文献   

6.
The dependence of nucleolar reformation on RNA synthesis that resumes in late anaphase or early telophase has been investigated in synchronously dividing Amoeba proteus. RNA synthesis was completely inhibited throughout all stages of mitosis and the early hours of interphase with high concentrations of actinomycin D. In such cells, nucleolus-like bodies that bind azure B and pyronin were apparent in the reformed nuclei. The bodies appear as dense, fibrous masses with loosely associated, finely fibrillar material. There are no characteristic granular regions in the reformed structures. It is suggested that the bodies probably represent mainly nucleolar protein and residual RNA which can bring about the reorganization of nucleoli in the absence of postmitotic RNA synthesis.  相似文献   

7.
The DNA content in isolated nuclei of Amoeba proteus was determined for each of the three groups of synchronized amoebae over different intervals after division. Several nuclei of each amoeba group were fixed 1 h after division, before the amoebae were fed. About h after division, some amoebae in each group were given food (Tetrahymena pyriformis), while the rest were left starving. Samples of the nuclei of fed and starved amoebae were fixed 24 h and (in different groups) 42–55 h after division. In each group from 22 to 48% of the fed amoebae had divided prior to the last nuclei fixation. Starved amoebae did not undergo division. In all three amoeba groups the nuclear DNA content of fed cells by the end of interphase had increased to 280–300% the value for 1 h amoebae. The nuclear DNA content of starved amoebae of all three groups was also increased, and in two groups it exceeded the initial level more than two-fold. However, in all three groups, it was lower than that of fed amoebae. In all the groups the nuclear DNA content in fed amoebae grew after 24 h, i.e. during the second half of interphase, the increase accounting for from 11 to 48% of the total increase. The hypothesis is put forward that the increase in the nuclear DNA content during the cell cycle of Amoeba proteus is the result of two processes: (1) one-time replication of the DNA of the whole genome; and (2) repeated replication of some part of the DNA. In amoebae the relation of the pattern of nuclear DNA synthesis to the diet is considered.  相似文献   

8.
INFECTIVE ORGANISMS IN THE CYTOPLASM OF AMOEBA PROTEUS   总被引:4,自引:4,他引:0       下载免费PDF全文
Evidence from electron and phase microscopy is given which shows that infective organisms are present in the cytoplasm of Amoeba proteus. Vesicles containing living organisms have been observed after repeated washing and starvation of the amebae for a period of 2 weeks. Exposure to γ-radiation in conjunction with starvation, repeated washing, isolation of single amebae, refeeding with contaminant-free Tetrahymena, and clone selection has produced clones with reduced cytoplasmic infection. These findings are discussed in regard to the autoradiographic studies of other investigators on Amoeba proteus. The controversies over whether DNA and RNA are synthesized in the cytoplasm may be resolved by the finding of cytoplasmic infection.  相似文献   

9.
Adhesion and movement ofAmoeba proteusare both dependent on the appropriate arrangement of the F-actin cytoskeleton and on the presence of the cell nucleus. In this study the F-actin organization was examined by routine FITC-phalloidin staining and confocal laser microscopy in intact amoebae and in their nucleated and anucleated fragments, at different levels of cell adherence to the substratum. In the adhering and migrating intact cells and nucleated cell fragments dot-like aggregates of F-actin are scattered over the ventral side at sites close to the substratum. In the case of de-adhesion of nucleated specimens this pattern disappears and F-actin is accumulated in the cell centre and/or dispersed in the cytoplasm. The same actin distribution, without ventral dots, is found in the anucleated fragments which usually fail to attach to the substratum. Re-adhesion of anucleated fragments, induced by a modified substratum or spontaneous, is accompanied by restoration of actin dots at the lower cell side. It is concluded that: (1) adhering specimens ofA. proteusdisplay the same dot-like actin pattern on the ventral cell side, as many metazoan motile cells; (2) organization or disorganization of this pattern may occur independently of the presence of the cell nucleus, under the control of cell adhesion to the substratum.  相似文献   

10.
ABSTRACT. The role of bacterial endosymbionts in the acquisition of new phenotypic characters was studied by transplanting nuclei from an uninfected strain of Amoeba proteus into the enucleated cytoplasm of a symbiont-carrying strain. After 1–10 cell cycles, the nuclei were tested for two characters: compatibility with uninfected and infected cytoplasm, and their lethal effect against amoebae of the uninfected parent strain. A significant number of transplanted nuclei displayed both of the new phenotypic traits after a few divisions in the infected cytoplasm. Thus the influence of these endosymbionts on the nucleus of A. proteus was virtually instantaneous.  相似文献   

11.
The application of electron microscope autoradiography to Amoeba proteus cells labeled with tritiated thymidine has permitted the identification of morphologically distinct particles in the cytoplasm as the sites of incorporated DNA precursor. The particles correspond to those previously described from light microscope studies, with respect to both H3Tdr incorporation and distribution in centrifugally stratified amoebae. Ingested bacteria differ from the particles, in morphology as well as in the absence of associated label. Attempts to introduce a normal particle labeling pattern by incubating amoebae with labeled sediment derived from used amoeba medium failed. The resultant conclusion, that the particles are maintained in the amoeba by self-duplication, is supported by the presence of particles in configurations suggestive of division.  相似文献   

12.
Major biochemical and ultrastructural changes occur in Dictyostelium discoideum plasma membranes following aggregation of the amoebae. The effects of cyclic AMP, Concanavalin A (Con A), and disruption of cell contacts on membrane particle synthesis and the subsequent differentiation of prespores and mature spores were determined. The results indicated that prespore cell differentiation always failed under conditions in which large particle formation was inhibited or cells bearing particles were restricted in their contacts. Although prespore cells exposed to Con A formed mature spores devoid of prespore vacuoles, the cell walls were defective. The research suggests that the interactions between membrane particles of apposing amoebae may initiate differentiation of prespores and mature spores.  相似文献   

13.
The incorporation of tritiated thymidine in Amoeba proteus was reinvestigated in order to see if it could be associated with microscopically detectable structures. Staining experiments with basic dyes, including the fluorochrome acridine orange, revealed the presence of large numbers of 0.3 to 0.5 µ particles in the cytoplasm of all cells studied. The effect of nuclease digestion on the dye affinity of the particles suggests that they contain DNA as well as RNA. Centrifugation of living cells at 10,000 g leads to the sedimentation of the particles in the centrifugal third of the ameba near the nucleus. Analysis of centrifuged cells which had been incubated with H3-thymidine showed a very high degree of correlation between the location of the nucleic acid-containing granules and that of acid-insoluble, deoxyribonuclease-sensitive labeled molecules and leads to the conclusion that cytoplasmic DNA synthesis in Amoeba proteus occurs in association with these particles.  相似文献   

14.
When CHO cells are incubated under conditions of extreme amino acid starvation, effected by withdrawal of an amino acid from the medium together with genetic or chemical interference with the activity of the corresponding aminoacyl-tRNA synthetase, there is a rapid and profound decline in the functional capacity of the protein synthetic machinery. The effect was observed for all amino acids tested including leucine, asparagine, histidine, methionine and glutamine. This decline in protein synthetic potential appears to be due to a progressive permanent inactivation of the specific aminoacyl-tRNA synthetase concerned, as shown by a decline in the amount of cellular, specific aminoacyl-tRNA and a decline in the cell-free enzyme activity, measured after reversal of the starvation conditions. When cells are left for more than several hours under these starvation conditions, they shrink in size, lose viability and eventually disintegrate, with anomalous rapidity. We suggest that the progressive loss of protein synthetic capacity of the cells is the prime cause of these subsequent events. If the starvation conditions are reversed before cell death, regeneration of the protein synthetic potential occurs rapidly but requires protein synthesis itself, implying the existence of strong control mechanisms for cellular aminoacyl-tRNA synthetase activities.  相似文献   

15.
The work is concerned with studying the breakdown of proteins and RNA when a polyauxotrophic Escherichia coli strain is incubated in a salt solution without amino acids, phosphorus, nitrogen and glucose at 43 degrees C as well as the ability of starving bacterial cells to recommence protein and RNA synthesis (also in the course of phage T4 infection) and to reproduce bacteriophages T4, lambda and MS2. Within the first two hours of the incubation, 12% of proteins and 40% of RNA break down to acid-soluble fragments. Then protein degradation stops while RNA decomposition goes on, but at a lower rate. Within 4-6 h of starvation, the rate of protein and RNA synthesis drops down 4-5 times and the survival rate equals 40-60% when the cells are transferred onto a complete medium. The quantitative characteristics of phages T4, lambda and MS2 reproduction fall down in prestarved cells. The authors speculate that E. coli cells die off in the course of starvation not because some unique structure is destroyed, but owing to the fact that the activity of enzymes and ribosomes gradually declines. As a result, the synthetic activity of the cell drops down abruptly and irreversibly because the enzymes are inactivated and RNA breaks down, which eventually causes cell death.  相似文献   

16.
Synthesis of ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein was determined in Saccharomyces cerevisiae during amino acid and pyrimidine starvation and during shift-up and shift-down conditions. During amino acid starvation, cell mass, cell number, and RNA continued to increase for varying periods. During amino acid and pyrimidine starvation, cell mass and RNA showed little increase, whereas total DNA increased 11 to 17%. After a shift from broth medium to a minimal defined medium, increase in RNA and protein remained at the preshift rate before assuming a lower rate. DNA increase remained at an intermediate rate during shift-down, and then dropped to a low rate. During shift-up from minimal to broth medium, increase in cell number, protein, and DNA showed varying lag periods before increasing to the new rate characteristic of broth medium; each of these quantities exhibited a step sometime in the first 2 hr after transfer to rich medium, suggesting a partial synchronous division. Immediately after shift-up, RNA synthesis assumed a high rate, and then dropped to a rate characteristic of growth in the rich medium after about 1 hr.  相似文献   

17.
The germinal vesicle (GV) was removed from toad oocytes at various times after treatment with progesterone, and enucleated eggs were inseminated under conditions that ensured fertilization of nucleated control eggs. The eggs enucleated before the initiation of GV break-down did not show genuine cleavage. Cytological examinations revealed, however, that spermatozoa enter the eggs enucleated even before the hormone treatment, without subsequent formation of pronuclei or DNA synthesis. The same lack of response was observed when several detergent-pretreated sperm were injected into enucleated eggs. When GV material was injected back into enucleated oocytes, the injected spermatozoa underwent transformation and DNA synthesis, although in variable degrees, in the egg cytoplasm. It is concluded that the egg becomes fertilizable independently of the GV during the hormone-induced maturation process. After entering the egg, however, spermatozoa require GV material for their participation in the developmental process.  相似文献   

18.
Daughter cells of the chlorococcal algaScenedesmus quadricauda incubated under photosynthesizing conditions in a nitrogen-free medium did not make any progress in the cell cycle. Photosynthetic starch formation continued for a period corresponding to a half of the cell cycle and then levelled off. Protein synthesis was very slow and it did not surpass double the initial amount. RNA content decayed from the start of treatment and approached about 2 pg/cell. When a synchronous population was deprived of nitrogen or of light in the middle of the cell cycle RNA synthesis stopped immediately or very soon afterwards and, in spite ofabundant intracellular nitrogen reserves, RNA content slowly declined. This degradation was much extensive in nitrogen starved cells where, eventually, the RNA content attained about half the starting value. In both experimental variants, DNA replications started at the same time as in control culture, but the final amount of DNA attained only half the control value. Protein synthesis stopped immediately in the dark. In the nitrogen-starved cells, it continued for several hours and protein content increased about 70 % of the amount present at the start of starvation. The number of daughter cells formed was proportional to the final protein content in the nitrogen-and light-deprived cells (corresponding division numbers were 6 and 4, respectively). Upon refeeding of daughter cells formed under nitrogen starvation, RNA synthesis started immediately, while protein synthesis displayed a lag of about 5 h. DNA replications were triggered at the time when the ratio of RNA to DNA content attained the same value as in the control culture.  相似文献   

19.
The chromatin of the dormant chick nucleus is dispersed in the heterokaryons made by Sendai virus fusion of phase II WI38 cells with chick erythrocyte nuclei. The erythrocyte nucleus resumes RNA synthesis and enters into DNA synthesis with the host nucleus. In the heterokaryons of phase III WI38 cells and chick erythrocytes, the nuclear chromatin is not dispersed and RNA synthesis occurs at a reduced rate. The differences in the physiological state of the young and senescent cells measured by [3H]uridine incorporation into nuclear RNA is reflected in the extent of reactivation of the chick erythrocyte nuclei in the cytoplasm of these cells. The reactivation of the chick nucleus in enucleated fibroblasts parallels the nucleated cells. The results of these studies are interpreted as evidence that there is a specific loss of nuclear function in the senescent cells.  相似文献   

20.
SYNOPSIS. The effects of phosphate starvation on the synthetic and division rates of Euglena gracilis strain Z are described. Phosphate starvation inhibits rates of the following processes, in the order: RNA synthesis > DNA synthesis > cell division > chlorophyll synthesis and plastid replication. As a consequence of the differential effect of phosphate starvation on the synthetic and division rates the average gross chemical composition of the cells is subject to continuous change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号