首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigations have been made of the slow, tight-binding inhibition by methotrexate of the reaction catalyzed by dihydrofolate reductase from Streptococcus faecium A. Quantitative analysis has shown that progress curve data are in accord with a mechanism that involves the rapid formation of an enzyme-NADPH-methotrexate complex that subsequently undergoes a relatively slow, reversible isomerization reaction. From the Ki value for the dissociation of methotrexate from the E-NADPH-methotrexate complex (23 nM) and values of 5.1 and 0.013 min-1 for the forward and reverse rate constants of the isomerization reaction, the overall inhibition constant for methotrexate was calculated to be 58 pM. The formation of an enzyme-methotrexate complex was demonstrated by means of fluorescence quenching, and a value of 0.36 muM was determined for its dissociation constant. The same technique was used to determine dissociation constants for the reaction of methotrexate with the E-NADP and E-NADPH complexes. The results indicate that in the presence of either NADPH or NADP there is enhancement of the binding of methotrexate to the enzyme. It is proposed that methotrexate behaves as a pseudosubstrate for dihydrofolate reductase.  相似文献   

2.
Alcohol dehydrogenase 3 (ADH3) has emerged as an important regulator of protein S-nitrosation in its function as S-nitrosoglutathione (GSNO) reductase. GSNO depletion is associated with various disease conditions, emphasizing the potential value of a specific ADH3 inhibitor. The present study investigated inhibition of ADH3-mediated GSNO reduction by various substrate analogues, including medium-chain fatty acids and glutathione derivatives. The observed inhibition type was non-competitive. Similar to the Michaelis constants for the corresponding ω-hydroxy fatty acids, the inhibition constants for fatty acids were in the micromolar range and showed a clear dependency on chain length with optimal inhibitory capacity for eleven and twelve carbons. The most efficient inhibitors found were undecanoic acid, dodecanoic acid and dodecanedioic acid, with no significant difference in inhibition constant. All glutathione-derived inhibitors displayed inhibition constants in the millimolar range, at least three orders of magnitudes higher than the Michaelis constants of the high-affinity substrates GSNO and S-hydroxymethylglutathione. The experimental results as well as docking simulations with GSNO and S-methylglutathione suggest that for ADH3 ligands with a glutathione scaffold, in contrast to fatty acids, a zinc-binding moiety is imperative for correct orientation and stabilization of the hydrophilic glutathione scaffold within a predominantly hydrophobic active site.  相似文献   

3.
When modelling biological ion channels using Brownian dynamics (BD) or Poisson–Nernst–Planck theory, the force encountered by permeant ions is calculated by solving Poisson’s equation. Two free parameters needed to solve this equation are the dielectric constant of water in the pore and the dielectric constant of the protein forming the channel. Although these values can in theory be deduced by various methods, they do not give a reliable answer when applied to channel-like geometries that contain charged particles. To determine the appropriate values of the dielectric constants, here we solve the inverse problem. Given the structure of the MthK channel, we attempt to determine the values of the protein and pore dielectric constants that minimize the discrepancies between the experimentally-determined current–voltage curve and the curve obtained from BD simulations. Two different methods have been applied to determine these values. First, we use all possible pairs of the pore dielectric constant of water, ranging from 20 to 80 in steps of 10, and the protein dielectric constant of 2–10 in steps of 2, and compare the simulated results with the experimental values. We find that the best agreement is obtained with experiment when a protein dielectric constant of 2 and a pore water dielectric constant of 60 is used. Second, we employ a learning-based stochastic optimization algorithm to pick out the optimum combination of the two dielectric constants. From the algorithm we obtain an optimum value of 2 for the protein dielectric constant and 64 for the pore dielectric constant.  相似文献   

4.
Badellino KO  Walsh PN 《Biochemistry》2000,39(16):4769-4777
Protease nexin II, a platelet-secreted protein containing a Kunitz-type domain, is a potent inhibitor of factor XIa with an inhibition constant of 250-400 pM. The present study examined the protein interactions responsible for this inhibition. The isolated catalytic domain of factor XIa is inhibited by protease nexin II with an inhibition constant of 437 +/- 62 pM, compared to 229 +/- 40 pM for the intact protein. Factor XIa is inhibited by a recombinant Kunitz domain with an inhibition constant of 344 +/- 37 pM versus 422 +/- 33 pM for the catalytic domain. Kinetic rate constants were determined by progress curve analysis. The association rate constants for inhibition of factor XIa by protease nexin II [(3.35 +/- 0.35) x 10(6) M(-1) s(-1)] and catalytic domain [(2.27 +/- 0. 25) x 10(6) M(-1) s(-1)] are nearly identical. The dissociation rate constants are very similar, (9.17 +/- 0.71) x 10(-4) and (7.97 +/- 1.1) x 10(-4) s(-1), respectively. The rate constants for factor XIa and catalytic domain inhibition by recombinant Kunitz domain are also very similar: association constants of (3.19 +/- 0.29) x 10(6) and (3.25 +/- 0.44) x 10(6) M(-1) s(-1), respectively; dissociation constants of (10.73 +/- 0.84) x 10(-4) and (10.36 +/- 1.3) x 10(-4) s(-1). The inhibition constant (K(i)) values calculated from these kinetic parameters are in close agreement with those measured from equilibrium binding experiments. These results suggest that the major interactions required for factor XIa inhibition by protease nexin II are localized to the catalytic domain of factor XIa and the Kunitz domain of protease nexin II.  相似文献   

5.
Active site titration by a reversible tight-binding inhibitor normally depends on prior knowledge of the inhibition constant. Conversely, the determination of tight-binding inhibition constants normally requires prior knowledge of the active enzyme concentration. Often, neither of these quantities is known with sufficient accuracy. This paper describes experimental conditions under which both the enzyme active site concentration and the tight-binding inhibition constant can be determined simultaneously from a single dose-response curve. Representative experimental data are shown for the inhibition of human kallikrein.  相似文献   

6.
A new method for determination of first-order elimination constants for dipeptides is presented. The peptides are hydrolysed by plasma enzymes into amino acids, and ortho-phthaldialdehyde (OPA) is used to react with free primary amino groups. The concentration of free amino groups can, thus, be followed using simple spectrophotometry. A mathematical model for the concentration of free primary amino groups with time is presented through which the elimination constant, and thus the half life, can be determined by curve fitting. The method is applied to inhibitors of angiotensin-converting enzyme derived from the primary structure of milk proteins. The results show that these dipeptides have in vitro half lives ranging from 4.3-64 min, when incubated with 50% rat plasma. This explains why these casokinins in vivo only cause a very moderate and short-lasting inhibition. The model for calculation of elimination constant is limited to dipeptides that do not contain a C-terminal proline. The derivatization method can be applied to longer peptides as a crude indicator of peptide hydrolysis, but does not allow calculation of their elimination constants per se.  相似文献   

7.
The ligand binding curve for a macromolecular system presents the average number or ligand molecules bound per macromolecule as a function of the chemical potential or the logarithm of the ligand concentration. We show that various observable properties of this curve, for example its asymptotes and derivatives, are expressible in terms of linear combinations of the mole fractions αi of macromolecules binding i molecules of ligand. Whenever enough such properties of the binding curve are known, the linear equations in αi can be solved to give the mole fractions of each of the various macromolecular species. An application of these results is that a Hill plot for hemoglobin-ligand equilibrium where the asymptotes approach unit slope can be made to yield the four Adair constants by a simple algebraic method. A second use is that a knowledge of the first and second derivatives of the binding curve at points along the curve can yield the species fractions as functions of the degree of saturation without direct knowledge of the ligand binding constants. These methods are illustrated by some numerical examples.  相似文献   

8.
On-line computerized treatment of enzyme kinetic data allows the precise measurement of Michaelis--Menten constants (Km and V) from a single progress curve. This method has been used to determine the kinetic constants of a beta-lactamase extracted from an Escherichia coli strain. In the profile of enzymatic activity there obtained, Km and V are a function of the pH. From these results some information is derived about the mechanism of the enzyme--substrate binding.  相似文献   

9.
1. The effect of temperature and pH was studied on the kinetics of inhibition of horse serum and human serum cholinesterase by four organophosphorus compounds and five carbamates. 2. For all compounds, and at each pH and temperature, the inhibition followed the kinetics of a bimolecular reaction with the inhibitor in excess, and with a negligible concentration of the Michaelis complex. 3. The second-order rate constants (k(a)) for inhibition of human serum cholinesterase by one organophosphate and one carbamate increased from 5 degrees to 40 degrees C with an apparent activation energy of 46kJ/mol (11kcal/mol). 4. The k(a) constant for inhibition of horse serum cholinesterase increased with temperature from 5 degrees to 30 degrees C, and then decreased from 30 degrees to 40 degrees C. The theoretical interpretation of such an unusual effect of temperature is derived. 5. The increase of k(a) with pH (human serum cholinesterase) followed the dissociation curve for a single group on the enzyme (pK7.5). 6. Rate constants for decarbamoylation (k(+3)) were determined, and the time-course of inhibition was calculated from the k(a) and k(+3) constants.  相似文献   

10.
The serum determination of circulating anti-double-stranded (ds)DNA autoantibodies is a routine measure for the laboratory diagnosis of systemic lupus erythematosus. Since available assays differ substantially and no feasible calibrator is available, the aim of this study was to evaluate a recently introduced surface plasmon resonance (SPR) biosensor chip for binding studies between dsDNA and anti-dsDNA autoantibodies and to demonstrate its usefulness for the characterization of new monoclonal antibody (mAb) standards and standardization of assays.We characterized two human and one murine monoclonal anti-dsDNA antibodies by measuring the kinetic on- and off-rates using the biosensor and calculating functional affinity (avidity) as the ratio of these. Obtained equilibrium dissociation constants were verified by an independent method and inhibition experiments were performed to determine reactivities to DNA of various length and composition.While all mAbs exhibited comparable avidities, which could be confirmed by gel shift experiments, one of them proved to have slower association and dissociation kinetics. This was the only mAb providing positive results in the Farr RIA. In inhibition experiments with ss- and ds-oligonucleotides 10, 24 and 42 bp in length, the mAbs acted substantially different.The study demonstrates how putative standards for the anti-dsDNA determination can be characterized using SPR biosensor technology. Our results suggest that kinetic rate constants seem to be decisive in explaining the behaviour of mAbs. Different reactivities to various DNA species should be taken into account with respect to varying DNA sources in commonly used laboratory assays.  相似文献   

11.
The inhibition of thrombin by antithrombin III (AT III) and heparin has been studied in pure systems to determine the kinetics of inhibition during human prothrombin activation. The present study shows that prothrombinase-catalyzed prothrombin activation resulted in the generation of thrombin and meizothrombin(des F1). In the absence of heparin the second-order rate constants of the inactivation of both thrombin and meizothrombin(des F1) formed in the reaction mixture appeared to be identical, k = 3.7 X 10(5) M-1 min-1. The rate constant of inhibition of purified thrombin was 6.5 X 10(5) M-1 min-1. In the presence of heparin the decay of the amidolytic activity was biexponential and could be modeled by a four-parameter equation to determine the pseudo first-order rate constants of inhibition as well as the composition of the reaction with respect to the levels of thrombin and meizothrombin(des F1). The ratio of thrombin over meizothrombin(des F1) varied with the initial prothrombin concentration. Heparin catalyzed the AT III inhibition of thrombin but not meizothrombin(des F1) formed during the prothrombin activation. Thrombin, generated by (Xa-Va-phospholipid-Ca2+) was inhibited by AT III/heparin more slowly than purified thrombin, and the saturation kinetics of the inhibition with respect to AT III differed from those found with purified thrombin.  相似文献   

12.
Nuclear histone acetyltransferase is found to be inhibited by various nucleic acids and components. Of the adenosine phosphates, the order of inhibitory potency is ATP>ADP>AMP. Among the nucleoside triphosphates, GTP seems to be the best inhibitor, followed by ATP, CTP, and UTP. Deoxymononucleotides have the same order of inhibition potential as their ribonucleotide counterparts, with inhibition constants in the low millimolar range. Oligonucleotides and polynucleotides are much better inhibitors than mononucleotides. The inhibition constants of the DNA molecules are size dependent. Molecules larger than 40 base pairs have inhibition constants less than 18 µg/ml, whereas molecules with decreasing numbers of base pairs have increasing magnitudes of inhibition constants. However, acetyltransferase has a lower affinity for free DNA molecules than for DNA · histone complexes as revealed by its interaction with DNA-Sepharose and histone · DNA-Sepharose columns. Furthermore, native chromatin depleted of endogenous histone acetyltransferase activity shows no inhibitory effect on the enzyme. Yet heated chromatin not only loses substrate activity but also becomes an inhibitor for the enzyme. Since unmodified sea urchin sperm chromatin has been shown to be a potent acetyltransferase inhibitor, it seems possible that DNA · histone complexes may be the true inhibitory species and that the conformational states of such complexes may serve as a regulatory mechanism in the control of the enzyme activity.  相似文献   

13.
Efficient methods for quantifying dissociation constants have become increasingly important for high‐throughput mutagenesis studies in the postgenomic era. However, experimentally determining binding affinity is often laborious, requires large amounts of purified protein, and utilizes specialized equipment. Recently, pulse proteolysis has been shown to be a robust and simple method to determine the dissociation constants for a protein–ligand pair based on the increase in thermodynamic stability upon ligand binding. Here, we extend this technique to determine binding affinities for a protein–protein complex involving the β‐lactamase TEM‐1 and various β‐lactamase inhibitor protein (BLIP) mutants. Interaction with BLIP results in an increase in the denaturation curve midpoint, Cm, of TEM‐1, which correlates with the rank order of binding affinities for several BLIP mutants. Hence, pulse proteolysis is a simple, effective method to assay for mutations that modulate binding affinity in protein–protein complexes. From a small set (n = 4) of TEM‐1/BLIP mutant complexes, a linear relationship between energy of stabilization (dissociation constant) and ΔCm was observed. From this “calibration curve,” accurate dissociation constants for two additional BLIP mutants were calculated directly from proteolysis‐derived ΔCm values. Therefore, in addition to qualitative information, armed with knowledge of the dissociation constants from the WT protein and a limited number of mutants, accurate quantitation of binding affinities can be determined for additional mutants from pulse proteolysis. Minimal sample requirements and the suitability of impure protein preparations are important advantages that make pulse proteolysis a powerful tool for high‐throughput mutagenesis binding studies.  相似文献   

14.
The linkage between the four-step binding of oxygen and the binding of heterotropic anionic ligands in hemoglobin was investigated by accurately measuring and analyzing the oxygen equilibrium curves of human adult hemoglobin in the presence and absence of various concentrations of one or two of the following materials: chloride (Cl-), 2,3-diphosphoglycerate (DPG), and inositol hexaphosphate (IHP). Each equilibrium curve was analyzed according to the Adair equation to evaluate the four-step oxygen equilibrium constants (Adair constants) and the median oxygen pressure. The binding constants of the anions for the molecular species of hemoglobin carrying j oxygen molecules, Hb(O2)j(j=0,1,...,4), were evaluated from the dependences of the Adair constants and the median oxygen pressure on the anion concentration by introducing a model which takes the competitive binding of Cl- and DPG or IHP into account. Assumptions made in the model are: (a) the hemoglobin molecule has two oxygen-linked binding sites for Cl- which are equivalent and independent and (b) no Cl- can be bound to hemoglobin to which DPG or IHP is already bound and vice versa. Thus, we could obtain values for the intrinsic binding constants of Cl- and DPG, i.e., the constants in the absence of other competitive anions. For IHP, only the binding constants and apparent binding constants for Hb and Hb(O2)2 were obtained. Values of the Cl- binding constants and apparent binding constants for DPG and IHP, i.e., the binding constants in the presence of Cl- for Hb and Hb(O2)4, were in reasonable agreement with literature values. From the binding constants we calculated anion binding curves for Hb(O2)j(J=0,1,...,4), the number of anions bound to Hb(O2)J, And the relationship between fractional anion saturation of hemoglobin and fractional oxygen saturation. The numbers of released anions are not uniform with respect to oxygenation step. This non-uniformity is the reason for the changes in the shape of the oxygen equilibrium curve with anion concentration changes and for the non-uniform dependences of the Adair constants on anion concentration, and also results in non-linear relations between anion saturation and oxygen saturation. The anion binding constants and various binding properties of the anions derived from those constants are consistent with those observed by other investigators using different techniques, indicating that the present model describes the oxygen-linked competitive anion binding well.  相似文献   

15.
Citrate synthase is a regulatory enzyme of the energy metabolism pathway controlling the citric acid cycle. It was studied in order to determine modes of enzyme regulation with regard to the life-style of the investigated species. Citrate synthase from crustaceans with different life-styles were compared: the pelagic euphausiids Euphausia superba from the Antarctic and Meganyctiphanes norvegica from the Scandinavian Kattegat and the Mediterranean were compared to the benthic isopods Serolis polita from the Antarctic and Idotea baltica from the Baltic. Citrate synthase was partly purified chromatographically and the influence of adenosine 5′-triphosphate on enzyme activity was examined. Mechanisms of inhibition and inhibitor constants were determined. Two different mechanisms of enzyme regulation by ATP were found. Citrate synthase from isopods was only competitively inhibited, while citrate synthase from euphausiids showed not only competitive inhibition but also activation by low concentrations of ATP. This activation is equivalent to the reversed methanism of uncompetitive inhibition. The ecophysiological relevances of the coupling of these mechanisms are discussed. The degree of competitive inhibition was different in the two groups of investigated crustaceans. Inhibitor constants were similar within the euphausiids but not in isopods, which showed higher or lower inhibition depending on the climatic zone: the colder the ambient temperature the lower the ATP inhibition. A possible mechanism of temperature adaptation through effects of varying inhibition constants is concluded.  相似文献   

16.
The kinetics of heavy metal ions inhibition of jack bean urease was studied by progress curve analysis in a reaction system without enzyme-inhibitor preincubation. The inhibition was found to be biphasic with an initial, small inhibitory phase changing over the time course of 5-10 min into a final linear steady state with a lower velocity. This time-dependent pattern was best described by mechanism B of slow-binding inhibition, involving the rapid formation of an EI complex that subsequently undergoes slow conversion to a more stable EI* complex. The kinetic parameters of the process, the inhibition constants Ki and Ki* and the forward k5 and reverse k6 rate constants for the conversion, were evaluated from the reaction progress curves by nonlinear regression treatment. Based on the values of the overall inhibition constant Ki*, the heavy metal ions were found to inhibit urease in the following decreasing order: Hg2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+ > Pb2+ > Co2+ > Fe3+ > As3+. With the Ki* values as low as 1.9 nM for Hg2+ and 7.1 nM for Cu2+, 100-1000 times lower than those of the other ions, urease may be utilized as a bioindicator of the trace levels of these ions in environmental monitoring, bioprocess control or pharmaceutical analysis.  相似文献   

17.
The rate of slow Li+ influx and the fraction of active form of acetylcholine receptor (AChR) of Electrophorus electricus membrane vesicles at equilibrium between the active and desensitized forms of the receptor were measured in the presence of various concentrations of phenyltrimethylammonium (PTA) and nereistoxin (NTX), by a simple filtration assay and flame emission spectroscopy. The equilibrium constants of these ligands in the minimal model, which accounts for the AChR-mediated ion flux, were estimated simply from these two measurements, since the equilibrium constants for acetylcholine (ACh) and carbamylcholine (Carb) estimated from two kinetic measurements agreed well with those estimated from five sophisticated kinetic measurements of AChR-mediated ion fluxes. PTA showed high potency but not high efficacy, and showed inhibition when large doses were applied. NTX showed both low potency and low efficacy and acted as an inhibitor when it was added with Carb. The apparent dissociation constants of these three agonists evaluated from the minimal model and the equilibrium constants agreed with those obtained by assay of inhibition of radiolabeled ligand binding.  相似文献   

18.
Isothermal titration calorimetry (ITC) was applied to determine enzymatic activity and inhibition. We measured the Michaelis–Menten kinetics for trypsin-catalyzed hydrolysis of two substrates, casein (an insoluble macromolecule substrate) and Nα-benzoyl-dl-arginine β-naphthylamide (a small substrate), and estimated the thermodynamic parameters in the temperature range from 20 to 37 °C. The inhibitory activities of reversible (small molecule benzamidine) and irreversible (small molecule phenylmethanesulfonyl fluoride and macromolecule α1-antitrypsin) inhibitors of trypsin were also determined. We showed the usefulness of ITC for fast and direct measurement of inhibition constants and half-maximal inhibitory concentrations and for predictions of the mechanism of inhibition. ITC kinetic assays could be an easy and straightforward way to estimate Michaelis–Menten constants and the effectiveness of inhibitors as well as to predict the inhibition mechanism. ITC efficiency was found to be similar to that of classical spectrophotometric enzymatic assays.  相似文献   

19.
The iodine-containing stable iminoxyl radicals with various distances between the N-O-group and the iodine atom are proposed to be used to study the structure of the active center of the microsomal cytochrome P-450. The radicals used induce changes in the optical spectra of the Fe3+ ion located in the active center of the enzyme, as in the case of type 1 substrates and inhibit essentially the microsomal oxidation of cytochrome P-450 substrates of type 1 and 2. This inhibition is neither due to suppression of the NADPH-cytochrome c reductase activity nor to cytochrome P-450 conversion to cytochrome P-420. Cytochrome P-450 substrates (aminopyrine) protect the enzyme against the radical-induced inactivation. The iodine-containing radicals are covalently bound to cytochrome P-450 in the vicinity of active center. The values of dissociation constants for the reversible enzyme-radical constants and the rate constants for the monomolecular transformation in the complex, k, were determined. The EPR method was used to detect the coupling between Fe3+ and the radical located in the active center of cytochrome P-450. The saturation curves of radical SPR spectra at 77 degrees K were employed to determine the contribution of Fe3+ to the relaxation time, T1, of the radicals covalently bound to cytochrome P-450 and to estimate the distances between the Fe3+ ion and the N-O-group of these radicals in the enzyme active center.  相似文献   

20.
We have used an integrated rate equation to analyse the reaction catalysed by the inducible arginine decarboxylase from Escherichia coli B. The stoichiometry Arginine----agmatine + CO2 is the simplest of the multiple-substrate/multiple-product cases. Twenty-one time courses were carried out at various initial concentrations of arginine and agmatine, and were then fitted to the integrated equation by using appropriate analytical procedures. Values were obtained for six of the seven possible kinetic constants, corresponding to kcat, KArg, the terms for competitive inhibition by agmatine, by CO2 and by agmatine and CO2 together, and the term for uncompetitive inhibition by agmatine. The uncompetitive constant for CO2 was indeterminate. Our results indicate that it is both practical and experimentally economical to obtain kinetic constants from full time courses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号