首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catecholamine norepinephrine is required for fetal survival, but its essential function is unknown. When catecholamine-deficient [tyrosine hydroxylase (Th) null] mouse fetuses die at embryonic day (E)13.5-14.5, they resemble wild-type (wt) fetuses exposed to hypoxia. They exhibit bradycardia (28% reduction in heart rate), thin ventricular myocardium (20% reduction in tissue), epicardial detachment, and death with vascular congestion, hemorrhage, and edema. At E12.5, before the appearance of morphological deficits, catecholamine-deficient fetuses are preferentially killed by experimentally induced hypoxia and have lower tissue Po(2) levels than wt siblings. By microarray analysis (http://www.ncbi.nlm.nih.gov/geo; accession no. GSE10341), hypoxia-inducible factor-1 target genes are induced to a greater extent in null fetuses than in wt siblings, supporting the notion that mutants experience lower oxygen tension or have an enhanced response to hypoxia. Hypoxia induces a 13-fold increase in plasma norepinephrine levels, which would be expected to increase heart rate, thereby improving oxygen delivery in wt mice. Surprisingly, increasing maternal oxygen (inspired O(2) 33 or 63%) prevents the effects of catecholamine deficiency, restoring heart rate, myocardial tissue, and survival of Th null fetuses to wt levels. We suggest that norepinephrine mediates fetal survival by maintaining oxygen homeostasis.  相似文献   

2.
Placental insufficiency, resulting in restriction of fetal substrate supply, is a major cause of intrauterine growth restriction (IUGR) and increased neonatal morbidity. Fetal adaptations to placental restriction maintain the growth of key organs, including the heart, but the impact of these adaptations on individual cardiomyocytes is unknown. Placental and hence fetal growth restriction was induced in fetal sheep by removing the majority of caruncles in the ewe before mating (placental restriction, PR). Vascular surgery was performed on 13 control and 11 PR fetuses at 110-125 days of gestation (term: 150 +/- 3 days). PR fetuses with a mean gestational Po(2) < 17 mmHg were defined as hypoxic. At postmortem (<135 or >135 days), fetal hearts were collected, and cardiomyocytes were isolated and fixed. Proliferating cardiomyocytes were counted by immunohistochemistry of Ki67 protein. Cardiomyocytes were stained with methylene blue to visualize the nuclei, and the proportion of mononucleated cells and length and width of cardiomyocytes were measured. PR resulted in chronic fetal hypoxia, IUGR, and elevated plasma cortisol concentrations. Although there was no difference in relative heart weights between control and PR fetuses, there was an increase in the proportion of mononucleated cardiomyocytes in PR fetuses. Whereas mononucleated and binucleated cardiomyocytes were smaller, the relative size of cardiomyocytes when expressed relative to heart weight was larger in PR compared with control fetuses. The increase in the relative proportion of mononucleated cardiomyocytes and the relative sparing of the growth of individual cardiomyocytes in the growth-restricted fetus are adaptations that may have long-term consequences for heart development in postnatal life.  相似文献   

3.
Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.  相似文献   

4.
After unilateral uterine artery ligation in midpregnancy twelve guinea-pig does were anesthetized at 63 days of gestation. The ST waveform of the fetal electrocardiogram and the short term heart rate variability were studied during normoxia and in response to acute hypoxia in growth retarded fetuses (n = 12, mean +/- SEM, 58.5 +/- 3.9 g) and their normal sized littermates (n = 12, 94.3 +/- 3.5 g). Hypoxia was induced by letting the doe breathe a low-oxygen gas mixture. After 10 min of hypoxia fetal blood was sampled by decapitation and blood gases, acid-base status and catecholamine concentrations were analyzed. The does responded to decrease in inspired oxygen concentration with changes in oxygen tension (13.8 +/- 0.8 to 4.3 +/- 0.2 kPa) and oxygen saturation (99.9 +/- 0.1% to 70.5 +/- 1.8%). Fetal blood gases and plasma catecholamine concentrations did not differ between the groups. In the growth retarded group standard bicarbonate was significantly lower compared to controls. The T/QRS ratio (the quotient between T wave height and QRS peak to peak amplitude) was normal and similar in both groups prior to the hypoxic period. In response to hypoxia T/QRS ratio increased in the normal sized group and T/QRS was correlated to carbon dioxide tension, oxygen saturation, pH, lactate, standard bicarbonate concentration, standard base excess and plasma noradrenaline concentration, respectively. The growth retarded fetuses presented a completely different pattern where 7 out of 12 fetuses showed a biphasic ST waveform during hypoxia with depression and downward sloping of the ST segment and negative T wave.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Continuous infusions of naloxone HC1 (0.5 mg/kg or 3.8 mg/kg) or saline were given intravenously to fetal sheep at 119 to 137 days of gestation during a one hour period of air administration and a one hour period of hypoxia induced by having ewes breathe 9% O2, 3% CO2 and 88% N2. Fetal carotid PaO2 fell to 13.0 +/- 0.5 mmHg during hypoxia with no change in pH. During hypoxia, plasma cortisol concentration increased significantly more in naloxone-infused fetuses than controls. Ewes, whose fetuses received naloxone, showed a significant increase in cortisol during hypoxia whereas no increase was observed in controls. There were no significant differences between saline and naloxone-infused fetuses during hypoxia in fetal breathing incidence, amplitude, frequency, number of deep inspiratory efforts per hour, heart rate, electrocortical activity or in the rise in plasma glucose caused by hypoxia. Results suggest that endogenous opiates may have a role in modulating cortisol production in the ewe and fetus during hypoxia but do not have a role in mediating the decrease in incidence of breathing activity or rise in plasma glucose. During air administration, naloxone significantly increased fetal breath amplitude, fetal and maternal plasma glucose, fetal heart rate, and the number of electrocortical changes per hour. This suggests endogenous opiates may have a more important role in the normoxic pregnant ewe and fetus.  相似文献   

6.
The effects of hypoxia on glucose turnover in the fetal sheep   总被引:3,自引:0,他引:3  
The origin of the hypoxia-induced rise in fetal blood glucose concentration in fetal sheep of 124-135 days was investigated. Hypoxia was induced in pregnant sheep and fetuses with chronically implanted vascular catheters by causing the ewes to breathe 9% O2 and 3% CO2 in N2 for 60 min. The rise in fetal plasma glucose caused by a 60% reduction in maternal PaO2 was associated with a 50% fall in plasma insulin concentration. The fall in insulin and rise in glucose was prevented by the alpha-adrenergic blocking agent phentolamine but not by the beta-antagonist propranolol. Turnover of glucose in the fetus under these conditions was measured with [6-3H] and [U-14C] glucose. Hypoxia reduced fetal glucose consumption despite the hyperglycaemia. After 30 min of hypoxia there was no evidence of fetal production of glucose but by 60 min substantial production was evident. The reduced fetal consumption and increased production of glucose was inhibited by phentolamine but not by propranolol. It is concluded that in the fetal sheep hypoxia induced hyperglycaemia is first caused by reduced consumption of glucose and thus fetal glycogen stores are not depleted. If the hypoxia persists fetal blood glucose is elevated further by fetal production of glucose.  相似文献   

7.
Hypoxia in the fetus and/or newborn is associated with an increased risk of pulmonary hypertension. The present study tested the hypothesis that long-term high-altitude hypoxemia differentially regulates contractility of fetal pulmonary arteries (PA) and veins (PV) mediated by differences in endothelial NO synthase (eNOS). PA and PV were isolated from near-term fetuses of pregnant ewes maintained at sea level (300 m) or high altitude of 3,801 m for 110 days (arterial Po(2) of 60 Torr). Hypoxia had no effect on the medial wall thickness of pulmonary vessels and did not alter KCl-induced contractions. In PA, hypoxia significantly increased norepinephrine (NE)-induced contractions, which were not affected by eNOS inhibitor N(G)-nitro-l-arginine (l-NNA). In PV, hypoxia had no effect on NE-induced contractions in the absence of l-NNA. l-NNA significantly increased NE-induced contractions in both control and hypoxic PV. In the presence of l-NNA, NE-induced contractions of PV were significantly decreased in hypoxic lambs compared with normoxic animals. Acetylcholine caused relaxations of PV but not PA, and hypoxia significantly decreased both pD(2) and the maximal response of acetylcholine-induced relaxation in PV. Additionally, hypoxia significantly decreased the maximal response of sodium nitroprusside-induced relaxations of both PA and PV. eNOS was detected in the endothelium of both PA and PV, and eNOS protein levels were significantly higher in PV than in PA in normoxic lambs. Hypoxia had no significant effect on eNOS levels in either PA or PV. The results demonstrate heterogeneity of fetal pulmonary arteries and veins in response to long-term high-altitude hypoxia and suggest a likely common mechanism downstream of NO in fetal pulmonary vessel response to chronic hypoxia in utero.  相似文献   

8.
9.
cFos expression (indicating a particular kind of neuronal activation) was examined in embryonic day (E) 18 chick embryos after exposure to 4 h of either normoxia (21% O2), modest hypoxia (15% O2), or medium hypoxia (10% O2). Eight regions of the brainstem and hypothalamus were surveyed, including seven previously shown to respond to hypoxia in late‐gestation mammalian fetuses (Breen et al., 1997; Nitsos and Walker, 1999b). Hypoxia‐related changes in chick embryo brain activation mirrored those found in fetal mammals with the exception of the medullary Raphe, which showed decreased hypoxic activation, compared with no change in mammals. This difference may be explained by the greater anapyrexic responses of chick embryos relative to mammalian fetuses. Activation in the A1/C1 region was examined in more detail to ascertain whether an O2‐sensitive subpopulation of these cells containing heme oxygenase 2 (HMOX2) may drive hypoxic brain responses before the maturation of peripheral O2‐sensing. HMOX2‐positive and ‐negative catecholaminergic cells and interdigitating noncatecholaminergic HMOX2‐positive cells all showed significant changes in cFos expression to hypoxia, with larger population responses seen in the catecholaminergic cells. Hypoxia‐induced activation of lower‐brain regions studied here was significantly better correlated with activation of the nucleus of the solitary tract (NTS) than with that of HMOX2‐containing A1/C1 neurons. Together, these observations suggest that (1) the functional circuitry controlling prenatal brain responses to hypoxia is strongly conserved between birds and mammals, and (2) NTS neurons are a more dominant driving force for prenatal hypoxic cFos brain responses than O2‐sensing A1/C1 neurons. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 64–74, 2016  相似文献   

10.
The placenta is a specialized vascular interface between the maternal and fetal circulations that increases in size to accommodate the nutritional and metabolic demands of the growing fetus. Vascular proliferation and expansion are critical components of placental development and, consequently, interference with vascular growth has the potential to severely restrict concurrent development of both the placenta and fetus. In this study, we describe the effects of an antiangiogenic agent, TNP-470, on placental vascular development and the induction of a form of intrauterine growth restriction (IUGR) in mice. Administration of TNP-470 to dams in the second half of pregnancy resulted in a smaller maternal weight gain accompanied by decreased placental and fetal sizes in comparison with control animals. Total numbers of fetuses per litter were not affected significantly. Stereological analysis of placentas revealed no changes in the combined lengths of vessels. However, the mean cross-sectional areas of maternal and fetal vessels in the labyrinth of TNP-470-treated mice were reduced at Embryonic Day 13.5 (E13.5) but not at E18.5. Further analysis showed reduced placental endothelial proliferation at E13.5 and E18.5 in TNP-470-treated animals. No other structural or morphometric differences in placentas were detected between TNP-470-treated and control mice at E18.5. This study provides conclusive evidence that administration of TNP-470 interferes with placental vascular proliferation and vessel caliber and results in a reproducible model of IUGR.  相似文献   

11.
Hypoxia during embryogenesis may induce changes in the development of some physiological regulatory systems, thereby causing permanent phenotypic changes in the embryo. Various levels of hypoxia at different time points during embryogenesis were found to affect both anatomical and physiological morphogenesis. These changes and adaptations depended on the timing, intensity, and duration of the hypoxic exposure and, moreover, were regulated by differential expression of developmentally important genes, mostly expressed in a stage- and time-dependent manner. Eggs incubated in a 17%-oxygen atmosphere for 12h/d from E5 through E12 exhibited a clear and significant increase in the vascular area of the chorioallantoic membrane (CAM); an increase that was already significant within 12h after the end of the 1st hypoxic exposures (E6). We used the combination of the genes, β-actin, RPLP0 and HPRT as a reference for gene expression profiling, in studying the expression levels of hypoxia-inducible factor 1-alpha (HIF1α), vascular endothelial growth factor alpha-2 (VEGF α 2), vascular endothelial growth factor receptor 2 (KDR), matrix metalloproteinase-2 (MMP2), and fibroblast growth factor 2 (FGF2), under normal and hypoxic conditions. In general, expression of all five investigated genes throughout the embryonic day of development had similar patterns of hypoxia-induced alterations. In E5.5 embryos, expression of HIF1α, MMP2, VEGFα2, and KDR was significantly higher in hypoxic embryos than in controls. In E6 embryos expression of HIF1α, VEGFα2, and FGF2 was significantly higher in hypoxic embryos than in controls. From E6.5 onward expression levels of the examined genes did not show any differences between hypoxic and control embryos. It can be concluded that in this experimental model, exposing broiler embryos to 17% O(2) from E5 to E7 induced significant angiogenesis, as expressed by the above genes. Further studies to examine whether this early exposure to hypoxic condition affects the chick's ability to withstand a post-hatch hypoxic environment is still required.  相似文献   

12.
Paracrine signaling mediated by FGF-10 and the FGF-R2IIIb receptor is required for formation of the lung. To determine the temporal requirements for FGF signaling during pulmonary morphogenesis, Sprouty-4 (Spry-4), an intracellular FGF receptor antagonist, was expressed in epithelial cells of the fetal lung under control of a doxycycline-inducible system. Severe defects in lobulation and severe lung hypoplasia were observed when Spry-4 was expressed throughout fetal lung development (E6.5-E18.5) or from E6.5 until E13.5. Effects of Spry-4 on branching were substantially reversed by removal of doxycycline from the dam at E12.5, but not at E13.5. In contrast, when initiated late in development (E12.5 to birth), Spry-4 caused less severe pulmonary hypoplasia. Expression of Spry-4 from E16.5 to E18.5 reduced lung growth and resulted in perinatal death due to respiratory failure. Expression of Spry-4 during the saccular and alveolar stages, from E18.5 to postnatal day 21, caused mild emphysema. These findings demonstrate that the embryonic-pseudoglandular stage is a critical time period during which Spry-sensitive pathways are required for branching morphogenesis, lobulation, and formation of the peripheral lung parenchyma.  相似文献   

13.
Intrauterine growth retardation in fetal sheep was caused by removal of endometrial caruncles prior to conception. Such fetuses are chronically hypoxaemic and to establish their ability to withstand additional episodes of hypoxia, the effects of administration of 9% O2 to the pregnant ewe was investigated. Fetuses were studied at 135-140 days. During maternal hypoxia the small fetuses showed a greater tendency to further hypoxaemia and acidaemia, but the differences compared with controls were not large. Whilst the initial response to hypoxaemia was a fall in heart rate in the small fetuses, unlike the controls, the heart rate returned to normal within 15 min. Metabolite responses to hypoxia in the small fetuses were less than normal and the changes in plasma insulin concentrations were uncommonly small. In contrast the plasma cortisol and ACTH responses to hypoxia were larger than normal in the small fetus. The results are discussed in relation to the altered physiological state of the growth-retarded fetal sheep.  相似文献   

14.
A method for the investigation of drug effects in the myocardium resistance to hypoxia has been suggested. It is based on the determination of drug effects on the performance of the isolated spontaneously contracting atrium (ISCA) of rats under hypoxic conditions. Hypoxia was induced by oxygen displacement from the nutritional solution by nitrogen. ISCA resistance to hypoxia was assessed by the mechanogram of the heart preparation (the duration and volume of ISCA performance being up to 50% of the initial amplitude). Using the inhibitor analysis, it has been demonstrated that the given model of myocardial hypoxia adequately reflects the role of energy cellular metabolism in the regulation of ISCA resistance to hypoxia and can be used in the search for myocardial antihypoxic agents.  相似文献   

15.
In this study, we investigated the way in which fetal insulin secretion is influenced by interrelated changes in blood glucose and sympathoadrenal activity. Experiments were conducted in late gestation sheep fetuses prepared with chronic peripheral and adrenal catheters. The fetus mounted a brisk insulin response to hyperglycemia but with only a minimal change in the glucose-to-insulin ratio, indicating a tight coupling between insulin secretion and plasma glucose. In well-oxygenated fetuses, alpha(2)-adrenergic blockade by idazoxan effected no change in fetal insulin concentration, indicating the absence of a resting sympathetic inhibitory tone for insulin secretion. With hypoxia, fetal norepinephrine (NE) and epinephrine secretion and plasma NE increased markedly; fetal insulin secretion decreased strikingly with the degree of change related to extant plasma glucose concentration. Idazoxan blocked this effect showing the hypoxic inhibition of insulin secretion to be mediated by a specific alpha(2)-adrenergic mechanism. alpha(2)-Blockade in the presence of sympathetic activation secondary to hypoxic stress also revealed the presence of a potent beta-adrenergic stimulatory effect for insulin secretion. However, based on an analysis of data at the completion of the study, this beta-stimulatory mechanism was seen to be absent in all six fetuses that had been subjected to a prior experimentally induced hypoxic stress but in only one of nine fetuses not subjected to this perturbation. We speculate that severe hypoxic stress in the fetus may, at least in the short term, have a residual effect in suppressing the beta-adrenergic stimulatory mechanism for insulin secretion.  相似文献   

16.
In light of recent observations that receptor-ligand binding and coupling are physiologically regulated, the present study examined the hypothesis that the direct effects of hypoxia on vascular contractility involve modulation of pharmacomechanical coupling via changes in agonist affinity and/or receptor density. Because the direct effects of hypoxia on vascular smooth muscle contractility can vary with age, we carried out these experiments using both fetal and adult arteries. In common carotid arteries from near-term fetal and adult sheep, hypoxia (PO(2) = 9-12 Torr for 30 min) reduced the maximum responses to potassium by 17.8 +/- 3.5% (fetus) and 20.5 +/- 2.2% (adult), significantly reduced the pD(2) for 5-HT in the fetus (7.01 +/- 0.1 to 6.3 +/- 0.2) but not the adult (6.1 +/- 0.1 to 6.0 +/- 0.1), and significantly reduced 5-HT-induced maximum contractions (as % maximum response to 120 mM K(+)) not in the fetus (from 114 +/- 7 to 70 +/- 10%, not significant) but only in the adult (from 83 +/- 15 to 25 +/- 7%, P < 0.05) arteries. Hypoxia significantly attenuated 5-HT binding affinity (pK(A), determined by partial irreversible blockade with phenoxybenzamine) in both fetal (from 6.5 +/- 0.2 to 6.0 +/- 0.2) and adult arteries (from 6.2 +/- 0. 2 to 5.7 +/- 0.1) and also decreased receptor density (fmol/mg protein, determined by competitive binding with ketanserin and mesulergine) in adult (from 18.3 +/- 1.1 to 10.9 +/- 1.0) but not in fetal (21.0 +/- 1.0 to 23.2 +/- 1.4) arteries. These results suggest that acute hypoxia modulates receptor-ligand binding via age-dependent modulation of agonist affinity and receptor density. These effects may contribute to hypoxic vasodilatation and help explain why the effects of hypoxia on vascular contractility differ between fetuses and adults.  相似文献   

17.
Direct Adrenal Medullary Catecholamine Response to Hypoxia in Fetal Sheep   总被引:2,自引:1,他引:1  
The present study was designed to investigate the direct response of fetal adrenomedullary cells to hypoxia, and the possible change in this responsiveness with maturation. Ovine fetal adrenomedullary cells, when exposed to 30 min of hypoxia induced by perfusing with Krebs-Henseleit solution equilibrated with 1% O2, released significantly greater amounts of total catecholamine into the perfusate, compared to basal conditions. After a 1-h control period, a second 30-min hypoxic episode stimulated a catecholamine response which was significantly smaller in magnitude than the first. Following the two hypoxic episodes, the cells were capable of responding to 50 mM KCl with a large increase in total catecholamine release. During the first hypoxic episode, the release of both norepinephrine and epinephrine was stimulated by equal magnitude. Fetal adrenomedullary cells obtained from fetuses at 100, 120, and 130 days gestation showed similar responsiveness to the same hypoxic stimulus, and these responses were not different from that observed in maternal adrenomedullary cells. On the contrary, responsiveness to KCl-induced depolarization was greatest in cells obtained from fetuses at 130 days gestation when compared to that in the younger fetuses. This increased responsiveness to KCl was accompanied by a greater catecholamine store in the adrenal medulla of the fetuses at this gestational age. These results suggest that ovine fetal adrenomedullary cells can respond directly to hypoxia by releasing catecholamines. This direct responsiveness became desensitized after repeated exposure. Finally, a decrease in direct responsiveness to hypoxia associated with maturation could be demonstrated.  相似文献   

18.
Mice lacking catecholamines die before birth, some with cardiovascular abnormalities. To investigate the role of catecholamines in development, embryonic day 12.5 (E12.5) fetuses were cultured and heart rate monitored. Under optimal oxygenation, wild-type and catecholamine-deficient fetuses had the same initial heart rate (200-220 beats/min), which decreased by 15% in wild-type fetuses during 50 min of culture. During the same culture period, catecholamine-deficient fetuses dropped their heart rate by 35%. Hypoxia reduced heart rate of wild-type fetuses by 35-40% in culture and by 20% in utero, assessed by echocardiography. However, catecholamine-deficient fetuses exhibited greater hypoxia-induced bradycardia, reducing their heart rate by 70-75% in culture. Isoproterenol, a beta-adrenergic receptor (beta-AR) agonist, reversed this extreme bradycardia, restoring the rate of catecholamine-deficient fetuses to that of nonmutant siblings. Moreover, isoproterenol rescued 100% of catecholamine-deficient pups to birth in a dose-dependent, stereo-specific manner when administered in the dam's drinking water. An alpha-AR agonist was without effect. When wild-type fetuses were cultured with adrenoreceptor antagonists to create pharmacological nulls, blockade of alpha-ARs with 10 microM phentolamine or beta-ARs with 10 microM bupranolol alone or in combination did not reduce heart rate under optimal oxygenation. However, when combined with hypoxia, beta-AR blockade reduced heart rate by 35%. In contrast, the muscarinic blocker atropine and the alpha-AR antagonist phentolamine had no effect. These data suggest that beta-ARs mediate survival in vivo and regulate heart rate in culture. We hypothesize that norepinephrine, acting through beta-ARs, maintains fetal heart rate during periods of transient hypoxia that occur throughout gestation, and that catecholamine-deficient fetuses die because they cannot withstand hypoxia-induced bradycardia.  相似文献   

19.
Chronic hypoxia during pregnancy is one of the most common insults to fetal development. We tested the hypothesis that maternal hypoxia induced apoptosis in the hearts of near-term fetal rats. Pregnant rats were divided into two groups, normoxic control and continuous hypoxic exposure (10.5% O2) from day 15 to 21 of gestation. Hearts were isolated from fetal rats of 21-day gestational age. Maternal hypoxia increased hypoxia-inducible factor-1alpha protein in fetal hearts. Chronic hypoxia significantly increased the percentage and size of binucleated myocytes and increased apoptotic cells from 1.4 +/- 0.14% to 2.7 +/- 0.3% in the fetal heart. In addition, the active cleaved form of caspase 3 was significantly increased in the hypoxic heart, which was associated with an increase in caspase 3 activity. There was a significant increase in Fas protein levels in the hypoxic heart. Chronic hypoxia did not change Bax protein levels but significantly decreased Bcl-2 proteins. In addition, chronic hypoxia significantly suppressed expression of heat shock protein 70. However, chronic hypoxia significantly increased expression of the anti-apoptotic protein 14-3-3, among other 14-3-3 isoforms. Chronic hypoxia differentially regulated beta-adrenoreceptor (beta-AR) subtypes with an increase in beta1-AR levels but no changes in beta2-AR. The results demonstrate that maternal hypoxia increases apoptosis in fetal rat heart, which may be mediated by an increase in Fas and a decrease in Bcl-2 proteins. Chronic hypoxia-mediated increase in beta1-AR and decrease in heat shock proteins may also play an important role in apoptosis in the fetal heart.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号