首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate that PI3 kinase and protein kinase B (PKB or Akt) control cell polarity and chemotaxis, in part, through the regulation of PAKa, which is required for myosin II assembly. We demonstrate that PI3K and PKB mediate PAKa's subcellular localization, PAKa's activation in response to chemoattractant stimulation, and chemoattractant-mediated myosin II assembly. Mutation of the PKB phosphorylation site in PAKa to Ala blocks PAKa's activation and inhibits PAKa redistribution in response to chemoattractant stimulation, whereas an Asp substitution leads to an activated protein. Addition of the PI3K inhibitor LY294002 results in a rapid loss of cell polarity and the axial distribution of actin, myosin, and PAKa. These results provide a mechanism by which PI3K regulates chemotaxis.  相似文献   

2.
We have investigated the role of Rap1 in controlling chemotaxis and cell adhesion in Dictyostelium discoideum. Rap1 is activated rapidly in response to chemoattractant stimulation, and activated Rap1 is preferentially found at the leading edge of chemotaxing cells. Cells expressing constitutively active Rap1 are highly adhesive and exhibit strong chemotaxis defects, which are partially caused by an inability to spatially and temporally regulate myosin assembly and disassembly. We demonstrate that the kinase Phg2, a putative Rap1 effector, colocalizes with Rap1-guanosine triphosphate at the leading edge and is required in an in vitro assay for myosin II phosphorylation, which disassembles myosin II and facilitates filamentous actin-mediated leading edge protrusion. We suggest that Rap1/Phg2 plays a role in controlling leading edge myosin II disassembly while passively allowing myosin II assembly along the lateral sides and posterior of the cell.  相似文献   

3.
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.  相似文献   

4.
The actin cytoskeleton controls the overall structure of cells and is highly polarized in chemotaxing cells, with F-actin assembled predominantly in the anterior leading edge and to a lesser degree in the cell's posterior. Wiskott-Aldrich syndrome protein (WASP) has emerged as a central player in controlling actin polymerization. We have investigated WASP function and its regulation in chemotaxing Dictyostelium cells and demonstrated the specific and essential role of WASP in organizing polarized F-actin assembly in chemotaxing cells. Cells expressing very low levels of WASP show reduced F-actin levels and significant defects in polarized F-actin assembly, resulting in an inability to establish axial polarity during chemotaxis. GFP-WASP preferentially localizes at the leading edge and uropod of chemotaxing cells and the B domain of WASP is required for the localization of WASP. We demonstrated that the B domain binds to PI(4,5)P2 and PI(3,4,5)P3 with similar affinities. The interaction between the B domain and PI(3,4,5)P3 plays an important role for the localization of WASP to the leading edge in chemotaxing cells. Our results suggest that the spatial and temporal control of WASP localization and activation is essential for the regulation of directional motility.  相似文献   

5.
The contractile vacuole (CV) is a dynamic organelle that enables Dictyostelium amoeba and other protist to maintain osmotic homeostasis by expelling excess water. In the present study, we have uncovered a mechanism that coordinates the mechanics of the CV with myosin II, regulated by VwkA, an unconventional protein kinase that is conserved in an array of protozoa. Green fluorescent protein (GFP)-VwkA fusion proteins localize persistently to the CV during both filling and expulsion phases of water. In vwkA null cells, the established CV marker dajumin still localizes to the CV, but these structures are large, spherical and severely impaired for discharge. Furthermore, myosin II cortical localization and assembly are abnormal in vwkA null cells. Parallel analysis of wild-type cells treated with myosin II inhibitors or of myosin II null cells also results in enlarged CVs with impaired dynamics. We suggest that the myosin II cortical cytoskeleton, regulated by VwkA, serves a critical conserved role in the periodic contractions of the CV, as part of the osmotic protective mechanism of protozoa.  相似文献   

6.
Chemotaxis-competent cells respond to a variety of ligands by activating second messenger pathways leading to changes in the actin/myosin cytoskeleton and directed cell movement. We demonstrate that Dictyostelium Akt/PKB, a homologue of mammalian Akt/PKB, is very rapidly and transiently activated by the chemoattractant cAMP. This activation takes place through G protein-coupled chemoattractant receptors via a pathway that requires homologues of mammalian p110 phosphoinositide-3 kinase. pkbA null cells exhibit aggregation-stage defects that include aberrant chemotaxis, a failure to polarize properly in a chemoattractant gradient and aggregation at low densities. Mechanistically, we demonstrate that the PH domain of Akt/PKB fused to GFP transiently translocates to the plasma membrane in response to cAMP with kinetics similar to those of Akt/PKB kinase activation and is localized to the leading edge of chemotaxing cells in vivo. Our results indicate Akt/PKB is part of the regulatory network required for sensing and responding to the chemoattractant gradient that mediates chemotaxis and aggregation.  相似文献   

7.
Myosin null mutants of Dictyostelium are defective for cytokinesis, multicellular development, and capping of surface proteins. We have used these cells as transformation recipients for an altered myosin heavy chain gene that encodes a protein bearing a carboxy-terminal 34-kD truncation. This truncation eliminates threonine phosphorylation sites previously shown to control filament assembly in vitro. Despite restoration of growth in suspension, development, and ability to cap cell surface proteins, these delta C34-truncated myosin transformants display severe cytoskeletal abnormalities, including excessive localization of the truncated myosin to the cortical cytoskeleton, impaired cell shaped dynamics, and a temporal defect in myosin dissociation from beneath capped surface proteins. These data demonstrate that the carboxy-terminal domain of myosin plays a critical role in regulating the disassembly of the protein from contractile structures in vivo.  相似文献   

8.
The function and intracellular localisation of the non-catalytic NH(2)-terminal region of focal adhesion kinase (FAK) are unclear. We investigated the targetting of the FAK NH(2)-terminal domain in HEK 293 and epithelial MDCK cells. Exogenous expression of a variety of GFP-fused and epitope-tagged NH(2) terminal domain constructs either including or lacking the major Tyr 397 autophosphorylation and Src-binding site targeted to nuclei and cell-cell junctions in HEK 293 cells and co-localised at junctions with occludin, and beta1 integrin subunits at junctions. Mutation of Tyr 397 also had no effect on localisation of the NH(2)-terminal domain. In contrast, constructs encoding either the kinase or focal adhesion targeting (FAT) domains but lacking the NH(2)-terminal region failed to localise to intercellular junctions or nuclei. The NH(2)-terminal domain was not associated with beta1 integrin subunits as indicated by co-immunoprecipitation experiments, but did co-localise with cortical actin filaments. The NH(2)-terminal domain also targetted to nuclei and intercellular junctions in MDCK cells, whereas full-length FAK localised only to focal adhesions in these cells. These results indicate that the FAK NH(2)-terminal domain targets to epithelial intercellular junctions and nuclei and suggest novel functions for FAK NH(2)-terminal domain fragments independent of Y397, kinase, and FAT domains.  相似文献   

9.
TRPM6 and TRPM7 encode channel-kinases. While these channels share electrophysiological properties and cellular functions, TRPM6 and TRPM7 are non-redundant genes raising the possibility that the kinases have distinct substrates. Here, we demonstrate that TRPM6 and TRPM7 phosphorylate the assembly domain of myosin IIA, IIB and IIC on identical residues. Whereas phosphorylation of myosin IIA is restricted to the coiled-coil domain, TRPM6 and TRPM7 also phosphorylate the non-helical tails of myosin IIB and IIC. TRPM7 does not phosphorylate eukaryotic elongation factor-2 (eEF-2) and myosin II is a poor substrate for eEF-2 kinase. In conclusion, TRPM6 and TRPM7 share exogenous substrates among themselves but not with functionally distant alpha-kinases. STRUCTURED SUMMARY:  相似文献   

10.
Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells.  相似文献   

11.
Pleckstrin homology (PH) domains are present in over one hundred signaling molecules, where they are thought to mediate membrane targeting by binding to phosphoinositides. They were initially defined at the NH(2) and COOH termini of the molecule, pleckstrin, a major substrate for protein kinase C in platelets. We have previously reported that pleckstrin associates with the plasma membrane, where it induces the formation of villous and ruffled structures from the surface of transfected cells (1). We now show that overexpression of pleckstrin results in reorganization of the actin cytoskeleton. This pleckstrin effect is regulated by its phosphorylation and requires the NH(2)-terminal, but not the COOH-terminal, PH domain. Overexpression of the NH(2)-terminal PH domain alone of pleckstrin is sufficient to induce the cytoskeletal effects. Pleckstrin-induced actin rearrangements are not inhibited by pharmacologic inhibition of phosphatidylinositol 3-kinase, nor are they blocked by co-expression of a dominant negative phosphatidylinositol 3-kinase. The cytoskeletal effects of pleckstrin can be blocked by co-expression of a dominant negative Rac1 variant, but not wild-type Rac and not a dominant negative Cdc42 variant. These data indicate that the NH(2)-terminal PH domain of pleckstrin induces reorganization of the actin cytoskeleton via a pathway dependent on Rac but independent of Cdc42 and phosphatidylinositol 3-kinase.  相似文献   

12.
A short nonhelical sequence at the COOH-terminus of vertebrate nonmuscle myosin has been shown to enhance myosin filament assembly. We have analyzed the role of this sequence in chicken intestinal epithelial brush border myosin, using protein engineering/site-directed mutagenesis. Clones encoding the rod region of this myosin were isolated and sequenced. They were truncated at various restriction sites and expressed in Escherichia coli, yielding a series of mutant myosin rods with or without the COOH-terminal tailpiece and with serial deletions from their NH2-termini. Deletion of the 35 residue COOH-terminal nonhelical tailpiece was sufficient to increase the critical concentration for myosin rod assembly by 50-fold (at 150 mM NaCl, pH 7.5), whereas NH2-terminal deletions had only minor effects. The only exception was the longest NH2-terminal deletion, which reduced the rod to 119 amino acids and rendered it assembly incompetent. The COOH-terminal tailpiece could be reduced by 15 amino acids and it still efficiently promoted assembly. We also found that the tailpiece promoted assembly of both filaments and segments; assemblies which have different molecular overlaps. Rod fragments carrying the COOH-terminal tailpiece did not promote the assembly of COOH-terminally deleted material when the two were mixed together. The tailpiece sequence thus has profound effects on assembly, yet it is apparently unstructured and can be bisected without affecting its function. Taken together these observations suggest that the nonhelical tailpiece may act sterically to block an otherwise dominant but unproductive molecular interaction in the self assembly process and does not, as has been previously thought, bind to a specific target site(s) on a neighboring molecule.  相似文献   

13.
Phosphorylation on Ser 19 of the myosin II regulatory light chain by myosin light chain kinase (MLCK) regulates actomyosin contractility in smooth muscle and vertebrate nonmuscle cells. The smooth/nonmuscle MLCK gene locus produces two kinases, a high molecular weight isoform (long MLCK) and a low molecular weight isoform (short MLCK), that are differentially expressed in smooth and nonmuscle tissues. To study the relative localization of the MLCK isoforms in cultured nonmuscle cells and to determine the spatial and temporal dynamics of MLCK localization during mitosis, we constructed green fluorescent protein fusions of the long and short MLCKs. In interphase cells, localization of the long MLCK to stress fibers is mediated by five DXRXXL motifs, which span the junction of the NH(2)-terminal extension and the short MLCK. In contrast, localization of the long MLCK to the cleavage furrow in dividing cells requires the five DXRXXL motifs as well as additional amino acid sequences present in the NH(2)-terminal extension. Thus, it appears that nonmuscle cells utilize different mechanisms for targeting the long MLCK to actomyosin structures during interphase and mitosis. Further studies have shown that the long MLCK has twofold lower kinase activity in early mitosis than in interphase or in the early stages of postmitotic spreading. These findings suggest a model in which MLCK and the myosin II phosphatase (Totsukawa, G., Y. Yamakita, S. Yamashiro, H. Hosoya, D.J. Hartshorne, and F. Matsumura. 1999. J. Cell Biol. 144:735-744) act cooperatively to regulate the level of Ser 19-phosphorylated myosin II during mitosis and initiate cytokinesis through the activation of myosin II motor activity.  相似文献   

14.
We characterized the sequence and protein interactions of cingulin, an M(r) 140-160-kD phosphoprotein localized on the cytoplasmic surface of epithelial tight junctions (TJ). The derived amino acid sequence of a full-length Xenopus laevis cingulin cDNA shows globular head (residues 1-439) and tail (1,326-1,368) domains and a central alpha-helical rod domain (440-1,325). Sequence analysis, electron microscopy, and pull-down assays indicate that the cingulin rod is responsible for the formation of coiled-coil parallel dimers, which can further aggregate through intermolecular interactions. Pull-down assays from epithelial, insect cell, and reticulocyte lysates show that an NH(2)-terminal fragment of cingulin (1-378) interacts in vitro with ZO-1 (K(d) approximately 5 nM), ZO-2, ZO-3, myosin, and AF-6, but not with symplekin, and a COOH-terminal fragment (377-1,368) interacts with myosin and ZO-3. ZO-1 and ZO-2 immunoprecipitates contain cingulin, suggesting in vivo interactions. Full-length cingulin, but not NH(2)-terminal and COOH-terminal fragments, colocalizes with endogenous cingulin in transfected MDCK cells, indicating that sequences within both head and rod domains are required for TJ localization. We propose that cingulin is a functionally important component of TJ, linking the submembrane plaque domain of TJ to the actomyosin cytoskeleton.  相似文献   

15.
Myosin II assembles into force-generating filaments that drive cytokinesis and the organization of the cell cortex. Regulation of myosin II activity can occur through modulation of filament assembly and by targeting to appropriate cellular sites. Here we show, using salt-dependent solubility and a novel fluorescence resonance energy transfer assay, that assembly of the Drosophila non-muscle myosin II heavy chain, zipper, is mediated by a 90-residue region (1849-1940) of the coiled-coil tail domain. This filament assembly domain, transiently expressed in Drosophila S2 cells, does not localize to the interphase cortex or the cytokinetic cleavage furrow, whereas a 500-residue region (1350-1865) that overlaps the NH(2) terminus of the assembly domain localizes to the interphase cortex but not the cytokinetic cleavage furrow. Targeting to these two sites appears to utilize distinct localization mechanisms as the assembly domain is required for cleavage furrow recruitment of a truncated coiled-coil tail region but not targeting to the interphase cortex. These results delineate the requirements for zipper filament assembly and indicate that the ability to form filaments is necessary for targeting to the cleavage furrow but not to the interphase cortex.  相似文献   

16.
After the initiation of bud formation, cells of the yeast Saccharomyces cerevisiae direct new growth to the developing bud. We show here that this vectorial growth is facilitated by activity of the MYO2 gene. The wild-type MYO2 gene encodes an essential form of myosin composed of an NH2-terminal domain typical of the globular, actin-binding domain of other myosins. This NH2-terminal domain is linked by what appears to be a short alpha-helical domain to a novel COOH-terminal region. At the restrictive temperature the myo2-66 mutation does not impair DNA, RNA, or protein biosynthetic activity, but produces unbudded, enlarged cells. This phenotype suggests a defect in localization of cell growth. Measurements of cell size demonstrated that the continued development of initiated buds, as well as bud initiation itself, is inhibited. Bulk secretion continues in mutant cells, although secretory vesicles accumulate. The MYO2 myosin thus may function as the molecular motor to transport secretory vesicles along actin cables to the site of bud development.  相似文献   

17.
In Dictyostelium cells, myosin II is found as cytosolic nonassembled monomers and cytoskeletal bipolar filaments. It is thought that the phosphorylation state of three threonine residues in the tail of myosin II heavy chain regulates the molecular motor's assembly state and localization. Phosphorylation of the myosin heavy chain at threonine residues 1823, 1833 and 2029 is responsible for maintaining myosin in the nonassembled state, and subsequent dephosphorylation of these residues is a prerequisite for assembly into the cytoskeleton. We report here the characterization of myosin heavy-chain phosphatase activities in Dictyostelium utilizing myosin II phosphorylated by myosin heavy-chain kinase A as a substrate. One of the myosin heavy-chain phosphatase activities was identified as protein phosphatase 2A and the purified holoenzyme was composed of a 37-kDa catalytic subunit, a 65-kDa A subunit and a 55-kDa B subunit. The protein phosphatase 2A holoenzyme displays two orders of magnitude higher activity towards myosin phosphorylated on the heavy chains than it does towards myosin phosphorylated on the regulatory light chains, consistent with a role in the control of filament assembly. The purified myosin heavy-chain phosphatase activity promotes bipolar filament assembly in vitro via dephosphorylation of the myosin heavy chain. This system should provide a valuable model for studying the regulation and localization of protein phosphatase 2A in the context of cytoskeletal reorganization.  相似文献   

18.
Reorganization of the actin cytoskeleton and contraction of actomyosin play pivotal roles in controlling cell shape changes and motility in epithelial morphogenesis. Dephosphorylation of the myosin regulatory light chain (MRLC) by myosin phosphatase is one of the key events involved. Allelic combinations producing intermediate strength mutants of the Drosophila myosin-binding subunit (DMBS) of myosin phosphatase showed imaginal discs with multilayered disrupted morphologies, and extremely mislocated cells, suggesting that DMBS is required to maintain proper epithelial organization. Clonal analyses revealed that DMBS null mutant cells appear to retract basally and localization of apical junction markers such as DE-cadherin is indetectable in most cells, whereas phosphorylated MRLC and F-actin become heavily concentrated apically, indicating misconfiguration of the apical cytoskeleton. In agreement with these findings, DMBS was found to concentrate at the apical domain suggesting its function is localized. Phenotypes similar to DMBS mutants including increased migration of cells were obtained by overexpressing the constitutive active form of MRLC or Rho-associated kinase signifying that the phenotypes are indeed caused through activation of Myosin II. The requirement of DMBS for the integrity of static epithelial cells in imaginal discs suggests that the regulation of Myosin II by DMBS has a role more general than its previously demonstrated functions in morphogenetic events.  相似文献   

19.
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.  相似文献   

20.
Betaglycan, also known as the TGF-beta type III receptor, is a membrane- anchored proteoglycan that presents TGF-beta to the type II signaling receptor, a transmembrane serine/threonine kinase. The betaglycan extracellular region, which can be shed by cells into the medium, contains a NH2-terminal domain related to endoglin and a COOH-terminal domain related to uromodulin, sperm receptors Zp2 and 3, and pancreatic secretory granule GP-2 protein. We identified residues Ser535 and Ser546 in the uromodulin-related region as the glycosaminoglycan (GAG) attachment sites. Their mutation to alanine prevents GAG attachment but does not interfere with betaglycan stability or ability to bind and present TGF-beta to receptor II. Using a panel of deletion mutants, we found that TGF-beta binds to the NH2-terminal endoglin-related region of betaglycan. The remainder of the extracellular domain and the cytoplasmic domain are not required for presentation of TGF-beta to receptor II; however, membrane anchorage is required. Soluble betaglycan can bind TGF-beta but does not enhance binding to membrane receptors. In fact, recombinant soluble betaglycan acts as potent inhibitor of TGF-beta binding to membrane receptors and blocks TGF-beta action, this effect being particularly pronounced with the TGF-beta 2 isoform. The results suggest that release of betaglycan into the medium converts this enhancer of TGF-beta action into a TGF-beta antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号