首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of methyl 3-azido-2,3-dideoxy-4,6-di-O-p-tolylsulfonyl- and -6-O-p-tolylsulfonyl-alpha-D-xylo-hexopyranosides is presented. High-resolution 1H and 13C NMR spectral data for both compounds and their precursors, and the single-crystal X-ray diffraction analysis for methyl 3-azido-2,3-dideoxy-4,6-di-O-p-tolylsulfonyl-alpha-D-xylo-hexopyranoside are reported. The influence of the O-protective group on the chemical shift of adjacent atoms in the 1H and 13C NMR spectra is discussed.  相似文献   

2.
Selective tosylation followed by acetylation of methyl 3-azido-2,3-dideoxy-alpha-D-arabino-hexopyranoside (1) in pyridine at room temperature affords a mixture of methyl 4-O-acetyl-3-azido-2,3-dideoxy-6-di-O-p-tolylsulfonyl-alpha-D-arabino-hexopyranoside (4) and methyl 3-azido-2,3-dideoxy-4,6-di-O-p-tolylsulfonyl-alpha-D-arabino-hexopyranoside (3). Compound 4 undergoes nucleophilic displacement with sodium iodide in acetic anhydride to give methyl 4-O-acetyl-3-azido-2,3,6-trideoxy-6-iodo-alpha-D-arabino-hexopyranoside (7), whose crystal structure and (1H) and (13)C NMR data are reported. This compound adopts the 4C(1) conformation.  相似文献   

3.
Glycosylation of trimethylsilyl derivatives of 5-benzyloxymethyl- and 5-hydroxymethyluracil with 3-azido-2,3-dideoxy-5-O-benzoyl-D-ribofuranosyl chloride (prepared from ethyl 3-azido-2,3-dideoxy-5-O-benzoyl-D-ribofuranoside) and subsequent deacylation gave in both cases a mixture of anomeric 3'-azido-2',3'-dideoxy-5-benzyloxymethyl-or 5-hydroxymethyluridines. The anomers were separated by preparative TLC and their structures were studied by UV, IR and 1H-NMR spectroscopy. It is shown that 1-(3-azido-2,3-dideoxy-alpha-D-ribofuranosyl)-5-benzyloxymethyluracil has cytotoxic activity in vitro: in 10(-5)-10(-4) M concentrations it inhibits the thymidine incorporation into DNA of CaOv cells on 78.6-95.2%.  相似文献   

4.
The synthesis of methyl (methyl 4-O-acetyl-3-azido-2,3-dideoxy-alpha/beta-D-arabino- and -alpha/beta-D-ribo-hexopyranosid)uronates is presented. High resolution (1)H and (13)C NMR spectral data for all diastereoisomers and single-crystal X-ray diffraction analysis for methyl (methyl 3-azido-2,3-dideoxy-beta-D-arabino-hexopyranosid)uronate are reported. The planarity of the 4-OAc and 5-COOMe groups as well as the orientations of the aglycone and azide groups in the crystal lattice is discussed. The influence of the 5-COOMe group on the pyranose ring conformation is considered.  相似文献   

5.
Liberek B 《Carbohydrate research》2005,340(12):2039-2047
Methyl 3-azido-2,3-dideoxy-alpha-D-xylo-, -alpha-D-lyxo-, and -beta-D-xylo-hexopyranosides were converted into 4-O-acetyl-3-azido-6-iodo-2,3,6-trideoxy analogues via 6-O-p-tolylsulfonyl compounds. The elimination of hydrogen iodide from 6-iodo glycosides yielded methyl 4-O-acetyl-3-azido-2,3,6-trideoxy-beta-L-erythro-, -alpha-L-threo-, and -beta-L-threo-hex-5-enopyranosides. The configuration and conformation of all products are evaluated in depth on the basis of (1)H and (13)C NMR data. Factors determining conformational energy in 4-O-protected-3-azido-2,3,6,-trideoxy-hex-5-enopyranosides are discussed.  相似文献   

6.
D-Galactose was converted into the glycosylating agents 4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alpha-D-glucopyranosyl chloride (11) and the methyl beta-D-thiopyranoside 19. Condensation of 11 with 2,5-diazido-1,6-di-O-benzoyl-2,5-di-deoxy-L-iditol in the presence of mercury salts gave 24% of 2,5-diazido-3-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-1,6-di-O-benzoyl-2,5-dideoxy-L-iditol. Methyl trifluoromethanesulfonate-promoted glycosylation of 1,3-diazido-2-O-benzyl-1,3-dideoxy-5,6-O-isopropylidene-D-gulit ol with 19 in the presence of 2,6-di-tert-butyl-4-methylpyridine gave 1,3-diazido-4-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-2-O-benzyl-1,3-dideoxy-5,6-O-isopropylidene-D-gulitol (42), whereas, in the absence of base, migration of the O-isopropylidene group occurred, affording 1,3-diazido-6-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-2-O-benzyl-1,3-dideoxy-4,5-O-isopropylidene-D-gulitol in addition to 42.  相似文献   

7.
The structures of the title alpha (1) and beta (2) anomers of ethyl 3-azido-2,3-dideoxy-d-arabino-exopyranoside (C(8)H(15)N(3)O(4)) are reported. The single-crystal structures of C(8)H(15)N(3)O(4) were determined by X-ray crystallography at 293K. It has been found that both title compounds crystallize in the orthorhombic space group. In both cases, the unit cell contains four asymmetric molecules. From intensity measurements, it has been shown that each of these molecules adopts a (4)C(1) chair conformation. The packing arrangement in the unit cell displays a stratified structure. Moreover, medium strength O-H...O hydrogen bonds in both crystal lattices can be observed.  相似文献   

8.
The photoaffinity analogues of ubiquinone 2,3-dimethoxy-5-methyl-6-[2-[1-oxo-3-(4-azido-2-nitroanilino) propoxy]-3-methylbutyl]-1,4-benzoquinone (2'-ANAP-Q-1) and 2,3-dimethoxy-5-methyl-6-[3-[1-oxo-3-(4-azido-2-nitroanilino) propoxy]-3-methylbutyl]-1,4-benzoquinone (3'-ANAP-Q-1) have been synthesized. The required intermediate alcohols 2,3-dimethoxy-5-methyl-6-(2-hydroxy-3-methylbutyl)-1,4-benzoquinone and 2,3-dimethoxy-5-methyl-6-(3-hydroxy-3-methylbutyl)-1,4-benzoquinone were prepared in good yield from ubiquinone 1 by hydration of the side-chain double bond via hydroboration or acid catalysis, respectively. These alcohols were then coupled with 3-(4-azido-2-nitroanilino)propanoic acid, with p-toluenesulfonyl chloride in dry pyridine, to give 2'- and 3'-ANAP-Q-1. The synthetic methods presented should be of general utility in the preparation of derivatives of ubiquinone in which a reactive or reporter group is relatively close to the ubiquinone ring. By use of membrane vesicles prepared from a ubi-men-strain of Escherichia coli described previously [Wallace, B., & Young, I. G. (1977) Biochim. Biophys. Acta 461, 84-100], it has been shown that 2'- and 3'-ANAP-Q-1 substitute for ubiquinone 8 in the NADH, succinate, and D-lactate oxidase systems. Thus, these compounds may be of value in labeling respiratory chain proteins that interact with ubiquinone.  相似文献   

9.
Several azido-ubiquinones have been synthesized for the study of protein-ubiquinone interaction in succinate-cytochrome c reductase. In the absence of light, azido-ubiquinones are partially effective in restoring enzymatic activity to ubiquinone- and phospholipid-depleted reductase and the binding of azido-ubiquinones can be partially reversed by 5-(10-bromodecyl)-ubiquinone. When 2-azido-3-methoxy-5-geranyl-6-methyl-1,4-benzoquinone reactivated reductase is illuminated with long wavelength UV light, a complete and irreversible inhibition is observed. This specific photo-inactivation, exerted only by 2-azido-3-methoxy-5-geranyl-6-methyl-1,4-benzoquinone, and not by other azido-ubiquinone derivatives, is evidence for the existence of a specific benzoquinone ring binding site in the enzyme.  相似文献   

10.
Abstract

During the course of preparation of 3′-azido-3′-deoxythymidine (AZT), we observed consistent formation of an isomer of AZT (2-4%) which was isolated and the structure established as 3-(3-azido-2,3-dideoxy-β-D-ezythro pentofuranosyl)thymine. In a more detailed study, this rearrangement was found to occur during the treatment of 2,3′-anhydro-5′-O-tritylthymidine (1) with LiN3 in aqueous DMF.  相似文献   

11.
The cytoplasmic fragment of band 3 protein isolated from the human erythrocyte membrane was linked to a CNBr-activated Sepharose matrix in an attempt to measure, in batch experiments, its equilibrium binding constant with oxy- and deoxyhemoglobin at physiological pH and ionic strength values and in the presence or the absence of 2,3-diphosphoglycerate. All the experiments were done at pH 7.2, and equilibrium constants were computed on the basis of one hemoglobin tetramer bound per monomer of fragment. In 10 mM-phosphate buffer, a dissociation constant KD = 2 X 10(-4)M was measured for oxyhemoglobin and was shown to increase to 8 X 10(-4)M in the presence of 50 mM-NaCl. Association could not be demonstrated at higher salt concentrations. Diphosphoglycerate-stripped deoxyhemoglobin was shown to associate more strongly with the cytoplasmic fragment of band 3. In 10 mM-bis-Tris (pH 7.2) and in the presence of 120 mM-NaCl, a dissociation constant KD = 4 X 10(-4)M was measured. Upon addition of increasing amounts of 2,3-diphosphoglycerate, the complex formed between deoxyhemoglobin and the cytoplasmic fragment of band 3 was dissociated. On the reasonable assumption that the hemoglobin binding site present on band 3 fragment was not modified upon linking the protein to the Sepharose matrix, the results indicated that diphosphoglycerate-stripped deoxyhemoglobin or partially liganded hemoglobin tetramers in the T state could bind band 3 inside the intact human red blood cell.  相似文献   

12.
John G. Bruno 《Luminescence》1998,13(3):139-145
Electrochemiluminescence (ECL) of 200 ppm 2,3-diaminonaphthalene (2,3-DAN) was studied alone and in conjunction with 100 ppm of 34 different metal and non-metal ions and revealed three relatively intense ECL responses from interactions of 2,3-DAN with Au+, Fe+3 and V+5. ECL responses from Cr+6 or Ru+3 with 2,3-DAN were less intense, but noteworthy, as was the coloured fluorescent product of the non-metal ion Se+4 interaction with 2,3-DAN. Several intense 2,3-DAN–metal ion ECL reactions were studied in greater detail and revealed various titration curves with ionic detection limits in the low ppm range, using a fixed level (200 ppm) of 2,3-DAN. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
2,3-Butanediol is a promising valuable chemical that can be used in various areas as a liquid fuel and a platform chemical. Here, 2,3-butanediol production in Saccharomyces cerevisiae was improved stepwise by eliminating byproduct formation and redox rebalancing. By introducing heterologous 2,3-butanediol biosynthetic pathway and deleting competing pathways producing ethanol and glycerol, metabolic flux was successfully redirected to 2,3-butanediol. In addition, the resulting redox cofactor imbalance was restored by overexpressing water-forming NADH oxidase (NoxE) from Lactococcus lactis. In a flask fed-batch fermentation with optimized conditions, the engineered adh1Δadh2Δadh3Δadh4Δadh5Δgpd1Δgpd2Δ strain overexpressing Bacillus subtilis α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD), S. cerevisiae 2,3-butanediol dehydrogenase (Bdh1), and L. lactis NoxE from a single multigene-expression vector produced 72.9 g/L 2,3-butanediol with the highest yield (0.41 g/g glucose) and productivity (1.43 g/(L·h)) ever reported in S. cerevisiae.  相似文献   

14.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

15.
芽胞杆菌发酵产2,3-丁二醇的研究进展及展望   总被引:3,自引:0,他引:3  
综述了近年来利用芽胞杆菌生产2,3-丁二醇(2,3-BD)的研究进展,包括生产菌株的筛选、影响芽胞杆菌发酵2,3-丁二醇的因素、芽胞杆菌2,3-丁二醇代谢途径及调控等方面,并对其研究方向进行了展望。  相似文献   

16.
Four modified substrates for acetylxylan esterases, 2-deoxy, 3-deoxy, 2-deoxy-2-fluoro, and 3-deoxy-3-fluoro derivatives of di-O-acetylated methyl beta-D-xylopyranoside were synthesized via 2,3-anhydropentopyranoside precursors. Methyl 2,3-anhydro-4-O-benzyl-beta-D-ribopyranoside was transformed into methyl 2,3-anhydro-4-O-benzyl-beta-D-lyxopyranoside in three steps. The epoxide ring opening of 2,3-anhydropentopyranosides was accomplished either by hydride reduction or hydrofluorination. Methyl beta-D-xylopyranoside 2,3,4-tri-O-, 2,4-di-O-, and 3,4-di-O-acetates, and the prepared diacetate analogues were tested as substrates of acetylxylan esterases from Schizophyllum commune and Trichoderma reesei. Measurement of their rate of deacetylation pointed to unique structural requirements of the enzymes for the substrates. The enzymes differed particularly in the requirement for the trans vicinal hydroxy group in the deacetylation at C-2 and C-3 and in the tolerance to the presence of trans vicinal acetyl groups esterifying the OH group at C-2 and C-3.  相似文献   

17.
Syntheses are described of 2-azido-4,6-di-O-benzyl-2,3-dideoxy-d-ribo-hexopyranosyl fluoride, 6-O-acetyl-2-azido-3-O-benzyl-2,4-dideoxy-d-xylo-hexopyranosyl fluoride and 2-azido-3,4-di-O-benzyl-2,6-dideoxy-d-glucopyranosyl fluoride. These glycosyl donors were coupled with the acceptor 1d-2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-myo-inositol and the α-coupled products were transformed into α-d-3dGlcpN-PI, α-d-4dGlcpN-PI and α-d-6dGlcpN-PI by way of the H-phosphonate route. Brief mention is made of the biological evaluation of these deoxy-sugar analogues and their N-acetylated forms as candidate substrate/inhibitors of the N-deacetylase and α-(1→4)-d-mannosyltransferase activities present in trypanosomal and HeLa (human) cell-free system.  相似文献   

18.
The synthesis, crystal structure data and 1H and 13C NMR spectroscopy of methyl 3-azido-2,3-dideoxy-alpha-D-arabino-hexopyranoside (5b) is reported. This compound adopts the 4C1 conformation. Hydrogen-bonded molecules of 5b form helices around the crystallographic 4(1) axis.  相似文献   

19.
20.
Abstract A 2,3-dihydroxybiphenyl-1,2-dioxygenase gene has been cloned from chromosomal DNA of Pseudomonas sp. DJ-12 which can grow on biphenyl or 4-chlorobiphenyl as the sole carbon and energy source. Enzymatic and immunochemical properties of the cloned 2,3-dihydroxybiphenyl-1,2-dioxygenase were characterized, and compared with those of P. pseudoalcaligenes KF707, Pseudomonas sp. KKS102, and P. putida OU83. The dioxygenase of Pseudomonas sp. DJ-12 was similar to those of P. pseudoalcaligenes KF707, and Pseudomonas sp. KKS102, but significantly different from that of P. putida OU83 in electrophoretic mobilities on native PAGE and SDS-PAGE. The dioxygenases of Pseudomonas sp. DJ-12 and P. putida OU83 exhibited the highest ring-fission activity to 3-methylcatechol, and those of P. pseudoalcaligenes KF707 and Pseudomonas sp. KKS102 to 2,3-dihydroxybiphenyl among 2,3-dihydroxybiphenyl, catechol, 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol as substrates. 2,3-dihydroxybiphenyl-1,2-dioxygenase of P. pseudoalcaligenes KF707 was immunochemically related to that of Pseudomonas sp. KKS102, but was different from those of Pseudomonas sp. DJ-12 and P. putida OU83.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号