首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescent adenosine analogue 4-amino-8-(2-deoxy-beta-d-ribofuranosyl)-5'-O-dimethoxytrityl-6-methyl-7(8H)-pteridone (6MAP) has been used to perform residue specific analyses of DNA A-tracts during the premelting transition. DNA A-tracts, which exhibit sequence-induced curvature, adopt a B-DNA conformation as a function of increasing temperature. Fluorescence melting curves indicate that 6MAP is a more sensitive reporter of the premelting transition than UV absorption spectroscopy. Further, residue specific fluorescence analyses of A-tract and control duplexes reveal that some of the conformational changes associated with the premelting transition occur within A-tract regions. Analyses of the energetics of the premelting transition indicate that ApA steps make a larger enthalpic contribution to the premelting transition than ApT steps. To explore the effect of cations on the premelting transition, fluorescence melts were performed in the presence of NH(4)(+), Mg(2+), and low (0.05 M) and high (0.5 M) concentrations of Na(+). These studies show that the fluorescence intensity changes associated with the premelting transition are sensitive to cation type and concentration and are larger and more pronounced in the presence of 0.5 M Na(+), NH(4)(+), and Mg(2+). Incorporation of 6MAP into longer duplexes containing phased A-tracts shows that the local environment of adenosines in phased A-tracts is similar to that of individual A-tracts. Fluorescence quenching results indicate that ApA and ApT steps within A-tracts are less solvent exposed than their counterparts in control sequence isomers, possibly because of the narrowed minor groove of A-tract sequences.  相似文献   

2.
The secondary structural changes of the membrane protein, bacteriorhodopsin, are studied during the premelting reversible transition by using laser-induced temperature jump technique and nanosecond time-resolved Fourier transform infrared spectroscopy. The helical structural changes are triggered by using a 15 degrees C temperature jump induced from a preheated bacteriorhodopsin in D2O solution at a temperature of 72 degrees C. The structural transition from alphaII- to alphaI-helices is observed by following the change in the frequency of the amide I band from 1667 to 1651 cm-1 and the shift in the frequency of the amide II vibration from 1542 cm-1 to 1436 cm-1 upon H/D exchange. It is found that although the amide I band changes its frequency on a time scale of <100 ns, the H/D exchange shifts the frequency of the amide II band and causes a complex changes in the 1651-1600 cm-1 and 1530-1430 cm-1 frequency region on a longer time scale (>300 ns). Our result suggests that in this "premelting transition" temperature region of bacteriorhodopsin, an intrahelical conformation conversion of the alphaII to alphaI leads to the exposure of the hydrophobic region of the protein to the aqueous medium.  相似文献   

3.
The intensities of the CD bands at about 275 and 190 nm were monitored for DNAs with different G + C contents as a function of temperature. The 190-nm bands showed a nearly complete and cooperative collapse on melting of the DNA, demonstrating that the CD arises from base–base interactions. The small cooperative change on melting shown by the 275-nm bands indicates that base–base interactions do not contribute much CD intensity here. No significant difference in melting temperature was found between the two wavelengths, but the lack of premelting in the 190-nm bands contrasted with the significant premelting in the 275 nm bands. Since the 190-nm bands are particularly sensitive to base–base interactions, the relative positions of the bases must not change much during premelting. Still, changes in such interactions would be noticeable on top of the low intensity of the 275-nm bands. Premelting is discussed in the light of recent studies on DNA conformation.  相似文献   

4.
Here we attempt to relate equilibrium temperature-dependent spectral changes in two synthetic RNA homopolymer duplexes—poly(rA) · poly(rU) and poly(rI) · poly(rC)—to the conformational opening detected in stopped-flow hydrogen–deuterium exchange experiments on these molecules. We are concerned with changes in several spectral properties that occur well below onset of the thermally induced helix-coil “melting” transition in these systems. These are known as “premelting” transitions, and can be detected in uv CD spectra as well as in vibrational bands of the bases in the ir. Both CD and ir spectra exhibit isoelliptic or isosbestic points consistent with a well-defined two-state premelting process. Application of a least-squares analysis to two-state models for premelting using data from different bands in the CD and ir shows that the enthalpies are substantially greater than that of the hydrogen-exchange opening. Thus the hydrogen-exchange open state represents only one premelting reaction among several that lead to equilibrium changes in helix geometry or base vibrational modes. The latter include processes that occur on a rapid time scale, including potential base-pair openings not productive for the exchange reaction. It appears that the former, and not the hydrogen-exchange opening, dominates the premelting alterations monitored by ir and CD spectroscopy.  相似文献   

5.
The reversible conformational change of DNAs and polydeoxyribonucleotides occurring before melting was followed by circular dichroism. Δθ/δT, the rate of change of ellipticity θ with temperature, was used mainly as a measure of this premelting phenomenon. If sodium ions were replaced by tetramethylammonium ions Δθ/δT decreased for poly (dA) poly (dT) and poly (dA.dT) poly (dT.dA), but increased for poly (dG.dC) poly (dC.dG). DNAs of different base composition showed no more premelting (Δθ/ΔT ~ 0) even at low molarities of TMACl provided the Na/TMA ratio was very small. For all cases studied the θ values at 0°C and at a given ionic strength were smaller in NaCl than in TMACl. When studying the series of ammonium ions from NH+4 to (C2H5)4,N+ the Δθ/ΔT values first decreased, going through zero with TMA+ io and then increased again. A tentative and qualitative explanation of our results can be given: (a) Hydration of the polymers increases in presence of TMA ions and their average stability decreases; locally, however, (AT) pairs are preferentially stabilized by TMA ions owing to a specific interaction at the level of O2 of thymine. (b) In order to explain the different behaviour of (AT) polymers and DNA, it is assumed that only the B structure is able to accommodate TMA ions in the small groove of the double stranded helix.  相似文献   

6.
The temperature dependent transition from duplex to a single strand in E. coli 5S ribosomal RNA is a multistep process, and it involves intermediate states. We have analyzed these structural dynamics by chemical modification of cytidines and by single strand specific nuclease digestions. This combined approach led to the characterization of premelting and melting transitions within individual structural segments of the native macromolecule, which we feel may find general application to the structure of biological polyribonucleotides: 1) G-C base pairs at the termini of helices are relatively unstable and they readily undergo premelting transition. 2) Internal G-U/A-U rich stretches of helices exhibit dynamic premelting properties. 3) Hairpin loops have a relatively stronger destabilizing effect than internal loops. 4) Bulge loops destabilize the neighbouring base pairs. 5) Melting of helical segments occurs starting from the destabilizing structures listed above, preferentially from the helix termini. E. coli 5S rRNA has been shown to adopt different conformations. The presence of urea leads to induction of enhancement in the sensitivity for nuclease S1 at several nucleotide positions. The possibility of structural rearrangements will be discussed.  相似文献   

7.
Heyes CD  El-Sayed MA 《Biochemistry》2001,40(39):11819-11827
We have measured the temperature dependence of the FT-IR spectra of bacteriorhodopsin (bR) as a function of the pH and of the divalent cation regeneration with Ca(2+) and Mg(2+). It has been found that although the irreversible melting transition shows a strong dependence on the pH of the native bR, the premelting reversible transition at 78-80 degrees C shows very little variation over the pH range studied. It is further shown that the acid blue bR shows a red-shifted amide I spectrum at physiological temperature, which shows a more typical alpha-helical frequency component at 1652 cm(-)(1) and could be the reason for the observed reduction of its melting temperature and lack of an observed premelting transition. Furthermore, the thermal transitions for Ca(2+)- and Mg(2+)-regenerated bR (Ca-bR and Mg-bR, respectively) each show a premelting transition at the same 78-80 degrees C temperature as the native purple membrane, but the irreversible melting transition has a slight dependence on the cation identity. The pH dependence of the Ca(2+)-regenerated bR is studied, and neither transition varies over the pH range studied. These results are discussed in terms of the cation contribution to the secondary structural stability in bR.  相似文献   

8.
We have employed a variety of physical methods to study the equilibrium melting and temperature-dependent conformational dynamics of dA.dT tracts in fractionated synthetic DNA polymers and in well-defined fragments of kinetoplast DNA (kDNA). Using circular dichroism (CD), we have detected a temperature-dependent, "premelting" event in poly(dA).poly(dT) which exhibits a midpoint near 37 degrees C. Significantly, we also detect this CD "premelting" behavior in a fragment of kDNA. By contrast, we do not observe this "premelting" behavior in the temperature-dependent CD spectra of poly[d(AT)].poly[d(AT)], poly(dG).poly(dC), poly[d(GC)].poly[d(GC)], or calf thymus DNA. Thus, poly(dA).poly(dT) and kDNA exhibit a common CD-detected "premelting" event which is absent in the other duplex systems studied in this work. Furthermore, we find that the anomalous electrophoretic retardation of the kDNA fragments we have investigated disappears at temperatures above approximately 37 degrees C. We also observe that the rotational dynamics of poly(dA).poly(dT) and kDNA as assessed by singlet depletion anisotropy decay (SDAD) and electric birefringence decay (EBD) also display a discontinuity near 37 degrees C, which is not observed for the other duplex systems studied. Thus, in the aggregate, our static and dynamic measurements suggest that the homo dA.dT sequence element [common to both poly(dA).poly(dT) and kDNA] is capable of a temperature-dependent equilibrium between at least two helical states in a temperature range well below that required to induce global melting of the host duplex. We suggest that this "preglobal" melting event may correspond to the thermally induced "disruption" of "bent" DNA.  相似文献   

9.
Changes in the average secondary structures of three different linear DNAs over the premelting region from 5 to 60°C were investigated by measuring their CD spectra and also their torsion elastic constants (〈α〉) by time-resolved fluorescence polarization anisotropy. For one of these DNAs, the HaeII fragment of pBR322, the apparent diffusion coefficients [Dapp (k)] at small and large scattering vectors (k) were also measured by dynamic light scattering. With increasing temperature, all three DNAs exhibited typical premelting changes in their CD spectra, and these were accompanied by 1.4- to 1.7-fold decreases in 〈α〉. Also for the 1876 base pair fragment, Dapp(k) at large scattering vectors, which is sensitive to the dynamic bending rigidity, decreased by 17%, even though there was no change at small scattering vectors, where Dapp(k) = D0 is the translational diffusion coefficient of the center-of-mass. These observations demonstrate conclusively that the premelting CD changes of these DNAs are associated with a significant change in average secondary structure and mechanical properties, though not in persistence length. In the presence of 0.5 M tetramethylammonium chloride (TMA-Cl) the premelting change in CD is largely suppressed, and the corresponding changes in 〈α〉 and Dapp(k) at large scattering vectors are substantially diminished. These observations suggest that TMA-Cl, which binds preferentially to A · T-rich regions and stabilizes those regions (relative to G · C-rich regions) against melting, effectively stabilizes the prevailing low-temperature secondary structure sufficiently that the DNA is effectively trapped in that state over the temperature range observed. © 1998 John Wiley & Sons, Inc. Biopoly 45: 503–515, 1998  相似文献   

10.
We employ a mean field, modified, self-consistent phonon theory to evaluate the single base-pair opening rate and the probability of a base pair in the amino proton exchangeable state for the homopolymer poly(dA).poly(dT) at temperatures below the helix-coil transition region. Our calculated premelting single base-pair opening probabilities are in general agreement with several available experimental estimates from imino proton exchange and formaldehyde-induced DNA melting measurements. These calculated opening probabilities, however, are in disagreement with the prediction of the helix-coil transition theory. Possible reasons for the differences are discussed, especially the possible different definition of a meaningful open state in the premelting region. The premelting open state of the modified self-consistent phonon approximation theory seems to be appropriate to describe a solvent-accessible open configuration that is sufficient to facilitate important chemical reactions such as imino proton exchange and formaldehyde reaction with the bases. This can be compared with the completely unstacked open state of the helix-coil transition theory originally defined in the helix-coil transition region. We propose that the amino proton exchangeable state is different from the open state associated with melting and only involves the breaking of the amino interbase H bond. The agreement between the calculated and experimentally estimated probability of a base pair in the amino proton exchangeable state seems to support this hypothesis.  相似文献   

11.
Poly(dA).poly(dT) and DNA duplex with four or more adenine bases in a row exhibits a broad, solid-state structural premelting transition at about 35 degrees C. The low-temperature structure is correlated with the phenomena of "bent DNA." We have conducted temperature-dependent ultraviolet resonance Raman measurements of the structural transition using poly(dA).poly(dT) at physiological salt conditions, and are able to identify, between the high and low temperature limits, changes in the vibrational frequencies associated with the C4 carbonyl stretching mode in the thymine ring and the N6 scissors mode of the amine in the adenine ring of poly(dA).poly(dT). This work supports the model that the oligo-dA tracts' solid-state structural premelting transition is due to a set of cross-stand bifurcated hydrogen bonds between consecutive dA. dT pairs.  相似文献   

12.
Differential scanning calorimetry, fluorescence spectroscopy and freeze-fracture electron microscopy have been applied to a study of the reconstituted Ca2+-ATPase proteins from sarcoplasmic reticulum when they are incorporated into pure lipid/water systems. The results obtained with these techniques have been used to examine the effects of this intrinsic protein upon the surrounding lipid at temperatures above and below the main lipid solid-fluid phase transition temperature (Tc). 1. Above this Tc value, the freeze-fracture data show that the proteins are randomly distributed within the plane of the bilayer. The fluorescence data show that as the protein content in the bilayer increases, so does the 'microviscosity'. 2. Below Tc the proteins occur in high protein to lipid patches, separate from the remaining crystalline lipid. The fluorescence data indicate that at these temperatures the presence of the protein causes a decrease in microviscosity, whilst the calorimetric data indicate a decrease in enthalpy of the main lipid transition. 3. A premelting of the high protein to lipid patches formed by phase separation within the lipid bilayers is indicated by the calorimetric and fluorescence data. This observation is used to rationalise the 'anomalous' properties of the dipalmitoyl phosphatidylcholine-ATPase of exhibiting activity at temperatures well below the lipid phase transition at 41 degrees C.  相似文献   

13.
The temperature dependence of the Raman spectrum of poly(dA).poly(dT) (dA: deoxyadenosine; dT: thymidine), a model for DNA containing consecutive adenine.thymine (A.T) pairs, has been analyzed using a spectrometer of high spectral precision and sensitivity. Three temperature intervals are distinguished: (a) premelting (10 < t < 70 degrees C), in which the native double helix is structurally altered but not dissociated into single strands; (b) melting (70 < t < 80 degrees C), in which the duplex is dissociated into single strands; and (c) postmelting (80 < t degrees C), in which no significant structural change can be detected. The distinctive Raman difference signatures observed between 10 and 70 degrees C and between 70 and 80 degrees C are interpreted in terms of the structural changes specific to premelting and melting transitions, respectively. Premelting alters the low-temperature conformation of the deoxyribose-phosphate backbone and eliminates base hydrogen bonding that is distinct from canonical Watson-Crick hydrogen bonding; these premelting perturbations occur without disruption of base stacking. Conversely, melting eliminates canonical Watson-Crick pairing and base stacking. The results are compared with those reported previously on poly(dA-dT).poly(dA-dT), the DNA structure consisting of alternating A.T and T.A pairs (L. Movileanu, J. M. Benevides, and G. J. Thomas, Jr. Journal of Raman Spectroscopy, 1999, Vol. 30, pp. 637-649). Poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) exhibit strikingly dissimilar temperature-dependent Raman profiles prior to the onset of melting. However, the two duplexes exhibit very similar melting transitions, including the same Raman indicators of ruptured Watson-Crick pairing, base unstacking and collapse of backbone order. A detailed analysis of the data provides a comprehensive Raman assignment scheme for adenosine and thymidine residues of B-DNA, delineates Raman markers diagnostic of consecutive A.T and alternating A.T/T.A tracts of DNA, and identifies the distinct Raman difference signatures for premelting and melting transitions in the two types of sequences.  相似文献   

14.
The presence of A(n) and A(n)T(n) tracts in double-helical sequences perturbs the structural properties of DNA molecules, resulting in the formation of an alternate conformation to standard B-DNA known as B'-DNA. Evidence for a transition occurring prior to duplex melting in molecules containing A(n) tracts was previously detected by circular dichroism (CD) and calorimetric studies. This premelting transition was attributed to a conformational change from B'- to B-DNA. Structural features of A(n) and A(n)T(n) tracts revealed by X-ray crystallography include a large degree of propeller twisting of adenine bases, narrowed minor grooves, and the formation of three-centered H-bonds between dA and dT bases. We report UV resonance Raman (UVRR) and CD spectroscopic studies of two related DNA dodecamer duplexes, d(CGCAAATTTGCG)(2) (A(3)T(3)) and d(CGCATATATGCG)(2) [(AT)(3)]. These studies address the presence of three-centered H-bonds in the B' conformation and gauge the impact of these putative H-bonds on the structural and thermodynamic properties of the A(3)T(3) duplex. UVRR and CD spectra reveal that the premelting transition is only observed for the A(3)T(3) duplex, is primarily localized to the dA and dT bases, and is associated with base stacking interactions. Spectroscopic changes associated with the premelting transition are not readily detectable for the sugar-phosphate backbone or the cytosine and guanosine bases. The temperature-dependent concerted frequency shifts of dA exocyclic NH(2) and dT C4=O vibrational modes suggest that the A(3)T(3) duplex forms three-centered hydrogen bonds at low temperatures, while the (AT)(3) duplex does not. The enthalpy of this H-bond, estimated from the thermally induced frequency shift of the dT C4=O vibrational mode, is approximately 1.9 kJ/mol or 0.46 kcal/mol.  相似文献   

15.
Structural information afforded by the X-ray crystallographic studies of ethidium-dinucleoside monophosphate crystalline complexes described in the preceding two papers has led to a detailed model for ethidium-DNA binding. Features of ethidium-DNA binding, in turn, have led to unifying structural concepts in understanding a wide range of drug-DNA interactions. It is possible that these concepts have still broader implications in understanding the nature of protein-DNA interactions.This paper begins by summarizing the stereochemical aspects of ethidium-DNA, actinomycin-DNA and irehdiamine-DNA binding, molecules that use intercalative and kinked-type geometries in binding to DNA. It then describes superhelical DNA structures formed by kinking DNA periodically varying numbers of base-pairs apart. κ-kinked B DNA, a structure formed by kinking DNA every ten base-pairs, is a left-handed superhelical structure that may be utilized in the organization of DNA within the nucleosome in chromatin. β-kinked B DNA is a right-handed superhelical structure formed by kinking DNA every two base-pairs. It is possible that premelting conformational changes occur in DNA which utilize elements of this structure. This would expose base-pairs to solvent denaturation, and could lower the activation energy necessary for strand separation during DNA denaturation. RNA polymerase and other DNA melting proteins could capitalize on this type of premelting conformational change when binding to DNA.The concept that conformational flexibility exists in DNA structure (and that drug intercalation is a phenomenon that reflects this flexibility) can, in addition, explain a wide variety of physicochemical data about DNA. In this paper we discuss the nature of these data in detail.  相似文献   

16.
We calculate thermal fluctuational base pair opening probability and the drug binding constant of a daunomycin-bound Poly d(CGTA) · Poly d(TACG) at temperatures from room temperature to its melting temperature. For comparison we also carry out a calculation on a drug-free DNA with the same sequence. Our calculations are carried out by means of a statistical approach using microscopic structures and established force fields and with cooperative effects incorporated into the algorithm. Both hydrogen bond disruption probabilities and drug unstacking probability are determined self-consistently. These probabilities are then used to determine temperature dependent base pair opening probabilities and the drug binding constant. The calculated base pair opening probabilities and drug binding constant are found to be in fair agreement with experiments carried out at room temperature. Our calculation shows cooperative base pair disruption and drug dissociation at certain critical temperatures close to the observed melting temperatures for similar helices. We find that the temperature dependence of the drug binding constant fits well to the van't Hoff relation, in agreement with observations. Our calculation indicates the occurrence of a premelting transition in the drug-bound DNA helix. Some comments are made about this premelting transition.  相似文献   

17.
Ice premelting during differential scanning calorimetry   总被引:1,自引:0,他引:1       下载免费PDF全文
PW Wilson  JW Arthur    AD Haymet 《Biophysical journal》1999,77(5):2850-2855
Premelting at the surface of ice crystals is caused by factors such as temperature, radius of curvature, and solute composition. When polycrystalline ice samples are warmed from well below the equilibrium melting point, surface melting may begin at temperatures as low as -15 degrees C. However, it has been reported (. Biophys. J. 65:1853-1865) that when polycrystalline ice was warmed in a differential scanning calorimetry (DSC) pan, melting began at about -50 degrees C, this extreme behavior being attributed to short-range forces. We show that there is no driving force for such premelting, and that for pure water samples in DSC pans curvature effects will cause premelting typically at just a few degrees below the equilibrium melting point. We also show that the rate of warming affects the slope of the DSC baseline and that this might be incorrectly interpreted as an endotherm. The work has consequences for DSC operators who use water as a standard in systems where subfreezing runs are important.  相似文献   

18.
The regulation of protein kinase C by oleic acid was studied, and parameters that characterize the activation of protein kinase C by oleic acid and distinguish its effects from those of diacylglycerol (DAG) and phosphatidylserine (PS) were delineated. Activation of protein kinase C by sodium oleate required the presence of calcium and showed mild cooperative behavior (Hill number of 1.25) suggesting that Ca(oleate)2 is the active species. Kinetic analysis of the interaction of sodium oleate with substrates indicated that sodium oleate acted to increase the activity of the enzyme without modulating the KM for either MgATP or histone substrates. In this respect, sodium oleate action resembled that of DAG but not PS. However, multiple parameters distinguished the effects of sodium oleate from those of DAG. Unlike DAG, sodium oleate was unable to inhibit phorbol dibutyrate binding to protein kinase C. Sodium oleate also failed to interact with micelle-bound protein kinase C and preferentially activated "soluble" protein kinase C. The addition of histone caused protein/lipid aggregation in the presence of DAG but not in the presence of oleate. Activation of protein kinase C by sodium oleate or by PS/DAG demonstrated differential susceptibility to the action of inhibitors. Sphingosine and NaCl were more potent in inhibiting activation of protein kinase C by PS/DAG than by sodium oleate. Sodium oleate also expressed PS-like activity in that calcium and oleate acted as cofactors in activation of protein kinase C by DAG. Similar to PS, the ability of oleate to act in synergy with DAG resulted from "competitive" activation with a decrease in KM(app) of protein kinase C for DAG. Finally, sodium oleate was unable to induce autophosphorylation of protein kinase C. These studies demonstrate that oleate activates protein kinase C by a mechanism that is distinct from PS/DAG but partially overlaps the kinetic effects of both PS and DAG. The significance of these studies is discussed in relation to mechanisms of protein kinase C activation and to the possible physiological relevance of activation of protein kinase C by fatty acids.  相似文献   

19.
The helical repeat of DNA at high temperature.   总被引:6,自引:2,他引:4       下载免费PDF全文
The increasing number of studies on thermophilic organisms addressed the question of DNA double helix parameters at high temperature. The present study shows that the helix rotation angle per base pair omega of an unconstrained DNA decreases linearly upon temperature increase, up to the premelting range. In the ionic conditions tested, this rule extends to temperatures up to 85 degrees C, which is a common growth temperature for many hyperthermophilic organisms. In addition, the torsional constant K of DNA decreases with temperature, indicating that the energy required to modify the DNA twist is lower at high temperature. These findings have several implications for people working on the structure and enzymology of DNA at high temperature.  相似文献   

20.
《The Journal of cell biology》1995,130(6):1319-1332
To study an endocytotic role of the GTP-binding protein RhoA in Xenopus oocytes, we have monitored changes in the surface expression of sodium pumps, the surface area of the oocyte and the uptake of the fluid-phase marker inulin. Xenopus oocytes possess intracellular sodium pumps that are continuously exchanged for surface sodium pumps by constitutive endo- and exocytosis. Injection of Clostridium botulinum C3 exoenzyme, which inactivates Rho by ADP-ribosylation, induced a redistribution of virtually all intracellular sodium pumps to the plasma membrane and increased the surface area of the oocytes. The identical effects were caused by injection of ADP-ribosylated recombinant RhoA into oocytes. The C3 exoenzyme acts by blocking constitutive endocytosis in oocytes, as determined using a mAb to the beta 1 subunit of the mouse sodium pump as a reporter molecule and oocytes expressing heterologous sodium pumps. In contrast, an increase in endocytosis and a decrease in the surface area was induced by injection of recombinant Val14-RhoA protein or Val14-rhoA cRNA. PMA stimulated sodium pump endocytosis, an effect that was blocked by a specific inhibitor of protein kinase C (Go 16) or by ADP-ribosylation of Rho by C3. Similarly, the phorbol ester-induced increase in fluid-phase endocytosis in oocytes was inhibited by Go 16, C3 transferase, or by injection of ADP-ribosylated RhoA. In contrast to C3 transferase, C. botulinum C2 transferase, which ADP-ribosylates actin, had no effect on sodium pump endocytosis or PMA-stimulated fluid- phase endocytosis. The data suggests that RhoA is an essential component of a presumably clathrin-independent endocytic pathway in Xenopus oocytes which can be regulated by protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号