首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deoxythymidine kinases (EC 2.7.1.--) induced in HeLa TK- cells by Herpes simplex Type I and Type II viruses both had a requirement for divalent cations. The enzymes had the highest activities in the presence of Mg2+, followed by Mn2+, Ca2+, Fe2+, and in that order, whereas they were inactive in the presence of Zn2+ and Cu2+. The amount of Mg2+ required for optimal activity was dependent on the amount of ATP present, so that optimal activities were found when the concentration of Mg2+ was equal to that of ATP; an excess of Mg2+ inhibited the reaction. The activities of various nucleoside triphosphates as phosphate donors for Herpes simplex virus Type I deoxythymidine kinase were in the order: ATP = dATP = ara ATP greater than CTP greater than dCTP greater than UTP greater than dUTP greater than GTP greater than dGTP. Those for Herpes simplex virus Type II deoxythymidine kinase were in the order: CTP greater than dCTP = ara CTP greater than dATP greater than ATP greater than UTP greater than GTP greater than dUTP = dGTP. For both deoxythymidine kinases induced by Herpes simplex virus, the nucleoside triphosphates tested exerted cooperative effects. The Km values of ATP and CTP for the Herpes simplex virus Type I enzyme were 30 and 70 muM respectively; whereas those for the Herpes simplex virus Typr II enzyme were 140 and 450 muM. Studies on binding of various thymidine analogs with free 5'-OH to these deoxythymidine kinases indicated that 5-substituted ethyl-, vinyl-, allyl-, propyl-, iodo- and bromo-dUrd as well as iodo5 dCyd and bromo5 dCyd had good affinity to both enzymes. In contrast, vinyl5 Urd, iodo5 Urd and arabinosylthymidine had good affinity only to the Herpes simplex virus Type I enzyme but not to the Herpes simplex virus Type II deoxythymidine kinase. All of these thymidine analogs were competitive inhibitors, with KI values in the range of 0.25 to 1.5 muM. Herpes simplex virus Type I deoxythymidine kinase was less sensitive to either dTTP or iodo dUTP inhibition than Herpes simplex virus Type II. Both dThd and dCyd could serve as substrates and competed with each other for Herpes simplex viruses Type I and Type II induced kinases, but they differed in their Km values for these enzymes. The Km values of dThd and dCyd were 0.59 muM and 25 muM for Herpes simplex virus Type I deoxythymidine kinase; while they were 0.36 muM and 88 muM respectively for the Herpes simplex virus Type II enzyme.  相似文献   

2.
3.
A deoxyuridine triphosphate nucleotidohydrolase (dUTPase) which is induced in KB cells infected with herpes simplex virus type 1 (HSV-1) was purified approximately 175-fold using affinity, hydrophobic, adsorption, and ion-exchange chromatography techniques. Of the nucleoside triphosphates commonly found in DNA and RNA, only dUTP acted as a substrate for the enzyme, and the apparent Km was 4 microM. While the HSV-1-induced dUTPase exhibited activity in the absence of added divalent cations, the activity was stimulated by Mg2+ and inhibited by EDTA. The inhibition caused by EDTA was reversed by Mg2+, Co2+, or Mn2+. The HSV-1-induced dUTPase was also inhibited by hydroxymercuribenzoate and to a lesser degree by pyrophosphate but not by orthophosphate. The molecular weight of the enzyme was estimated to be 53,000, and its isoelectric point was 5.8. The enzyme exhibited maximal activity over the pH range of 6.5-8.5. The enzyme was thermolabile at 45 degrees C, exhibiting a t1/2 of 35 min. The HSV-1-induced dUTPase was distinguishable from the KB dUTPase by its elution pattern on the various chromatography matrixes, isoelectric point, migration in polyacrylamide gels, thermostability, and response to divalent cations.  相似文献   

4.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

5.
6.
We have isolated a new cyclic AMP-independent protein kinase activity induced in HeLa cells by infection with herpes simplex virus type 1. Induction of the enzyme does not occur in cells treated with cycloheximide at the time of infection, or in cells infected with UV-inactivated herpes simplex virus type 1. The amount of enzyme induced in infected cells is dependent upon the multiplicity of infection. An enzyme with identical properties to the appearing in infected HeLa cells is also induced by herpes simplex virus type 1 in BHK cells.  相似文献   

7.
A novel DNA primase activity has been identified in HeLa cells infected with herpes simplex virus type 1 (HSV-1). Such an activity has not been detected in mock-infected cells. The primase activity coeluted with a portion of HSV-1 DNA polymerase from single-stranded DNA agarose columns loaded with high-salt extracts derived from infected cells. This DNA primase activity could be distinguished from host HeLa cell DNA primase by several criteria. First, the pH optimum of the HSV primase was relatively broad and peaked at 8.2 to 8.7 pH units. In contrast, the pH optimum of the HeLa DNA primase was very sharp and fell between pH 7.9 and 8.2. Second, freshly isolated HSV DNA primase was less salt sensitive than the HeLa primase and was eluted from single-stranded DNA agarose at higher salt concentrations than the host primase. Third, antibodies raised against individual peptides of the calf thymus DNA polymerase:primase complex cross-reacted with the HeLa primase but did not react with the HSV DNA primase. Fourth, freshly prepared HSV DNA primase appeared to be associated with the HSV polymerase, but after storage at 4 degrees C for several weeks, the DNA primase separated from the viral DNA polymerase. Separation or decoupling could also be achieved by gel filtration of the HSV polymerase:primase. This free DNA primase had an apparent molecular size of approximately 40 kilodaltons, whereas free HeLa DNA primase had an apparent molecular size of approximately 110 kilodaltons. On the basis of these data, we believe that the novel DNA primase activity in HSV-infected cells may be virus coded and that this enzyme represents a new and important function involved in the replication of HSV DNA.  相似文献   

8.
Thymidine kinase from herpes simplex virus type 1 (ATP:thymidine 5'-phosphotransferase; EC 2.7.1.21) has been purified from an overexpression system and crystallized against ammonium sulfate by using the hanging-drop technique. The tetragonal crystals are of space group P4122 or P4322, and have unit cell dimensions a = b = 84 A, c = 180 A.  相似文献   

9.
Affinity chromatography on single-stranded and double-stranded DNA-cellulose indicates that 12 proteins previously identified from herpes simplex virus type 2-infected cells, ranging in molecular weight from 28 X 10(3) to 186 X 10(3), bind to DNA-cellulose. The DNA-binding proteins found in infected cells differed in relative binding strengths for denatured DNA-cellulose. The virus specificity of these DNA-binding proteins was further studied by comparison with DNA-binding proteins isolated from mock-infected cells, and by immunoprecipitation of infected-cell DNA-binding proteins with antisera specific for viral antigens. The promise this technique holds for the purification and study of polypeptides involved in virus DNA replication, recombination, or repair is discussed.  相似文献   

10.
Levamisole was tested to determine whether the drug could reduce metastases by HSV-1-transformed cells in a model hamster system. The results presented reveal an inhibition of metastases to the lungs even when the drug is inoculated after development of subcutaneous tumors at the site of inoculation of the cells.  相似文献   

11.
A DNA helicase induced by herpes simplex virus type 1.   总被引:12,自引:6,他引:12       下载免费PDF全文
We have identified and partially purified a DNA-dependent ATPase that is present specifically in herpes simplex virus type 1-infected Vero cells. The enzyme which has a molecular weight of approximately 440,000 differs from the comparable host enzyme in its elution from phosphocellulose columns and in its nucleoside triphosphate specificity. The partially purified DNA-dependent ATPase is also a DNA helicase that couples ATP or GTP hydrolysis to the displacement of an oligonucleotide annealed to M13 single-stranded DNA. The enzyme requires a 3' single-stranded tail on the duplex substrate, suggesting that the polarity of unwinding is 5'----3' relative to the M13 DNA. The herpes specific DNA helicase may therefore translocate on the lagging strand in the semidiscontinuous replication of the herpes virus 1 genome.  相似文献   

12.
The alkaline exonuclease (AE) encoded by the herpes simplex virus type 1 (HSV-1) UL12 open reading frame was inducibly expressed in Escherichia coli and purified without the use of chromatographic separation. This recombinant AE was found to exhibit the same biochemical properties as the virus-encoded protein and was used to confirm the existence of a weak endonucleolytic activity in the enzyme. Antisera raised against the recombinant protein recognized several forms of the AE in HSV-1-infected cells. This expression and purification strategy will provide an economical and easily accessible alternative source of HSV-1 AE for future in vitro studies.  相似文献   

13.
Herpes simplex type 1 (HSV)-infected Vero cells can be permeabilized by a combination of hypotonic shock and a mild emulsifier, gum arabic. Permeabilized cells will incorporate triphosphate precursors into viral and host DNA in vitro in ratios similar to those seen in vivo. This reaction is ATP-dependent and is shown to be replicative by the single strand density shift of DNA synthesized in the presence of BrdUTP. The product is heterogeneous in size, and contains a significant proportion of rapidly sedimenting forms and of unit size (55S) viral DNA. The presence of polyamines and EGTA (a specific chelator of Ca2+ ions) in the labeling medium is shown to be necessary to maintain the integrity of the replicating DNA. The average size of newly synthesized single strands, however, is smaller than seen in vivo. The reaction is sensitive to phosphonoacetic acid added at the time of labeling, at concentrations which inhibit in vivo synthesis only after one hour of pre-exposure. These properties make permeabilized cell monolayers an attractive system for the study of HSV DNA replication.  相似文献   

14.
Herpes simplex virus-induced DNA polymerase purified by published methods was found to be contaminated with many others proteins, including virus structural proteins. Thus, DEAE-cellulose and phosphocellulose chromatography were used in combination with affinity chromatography to purify DNA polymerase from herpes simplex virus type 1- and type 2-infected cells. The purified enzyme retained unique features of the herpesvirus-induced DNA polymerase, including a requirement for high salt concentrations for maximal activity, a sensitivity to low phosphonoacetate concentrations, and the capacity to be neutralized by rabbit antiserum to herpesvirus-infected cells. By polyacrylamide gel electrophoresis, the purified DNA polymerase was associated with a virus-induced polypeptide of about 150,000 molecular weight.  相似文献   

15.
We have isolated a number of plaque-morphology mutants from a strain of herpes simplex virus type I which, unlike the wild type, cause extensive cell fusion during a productive viral infection. After the onset of fusion, there is an exponential decrease in the number of single cells as a function of time after infection. At a multiplicity of infection (MOI) of 3.8 plaque-forming units per cell, fusion begins 5.3 h after infection with the number of single cells decreasing to 10% of the original number 10.2 h after infection. As the MOI is gradually increased from 0.4 to 8, the onset of fusion occurs earlier during infection. However, when the MOI is increased from 8 to 86, the onset of fusion does not occur any earlier. The rate of fusion is independent of the MOI for an MOI greater than 1. The rate of fusion varies linearly with initial cell density up to 3.5 X 10(4) cells/cm2 and is independent of initial cell density at higher cell concentrations. To assay cell fusion we have developed a smiple quantitative assay using a Coulter counter to measure the number of single cells as a function of time after infection. Data obtained using a Coulter counter are similar to those obtained with a microscope assay.  相似文献   

16.
The acyclovir-resistant mutant of herpes simplex virus type 1, SC16 S1, induced reduced levels of thymidine kinase activity (ca. 25% reduction) in infected cells. The activity appeared with kinetics similar to that in wild type-infected cells, and pulse-labeling experiments showed that the thymidine kinase polypeptide was synthesized at a similar rate. We showed that the enzyme was virus specific by inactivating it with antiserum raised against herpes simplex virus-infected cell proteins. The enzyme induced by the mutant had reduced electrophoretic mobility in nondenaturing gels, decreased thermal stability, and decreased affinity for several different substrates (assessed by measurement of Km values) compared with the enzyme induced by the wild type. From the data obtained we conclude that the thymidine kinase induced by the mutant has an altered specificity, probably resulting from an amino acid substitution which affects the primary binding site for nucleosides and nucleoside analogs.  相似文献   

17.
UL9, the origin-binding protein of herpes simplex virus type 1 (HSV-1), has been overexpressed in an insect cell overexpression system and purified to homogeneity. In this report, we confirm and extend recent findings on the physical properties, enzymatic activities, and binding properties of UL9. We demonstrate that UL9 exists primarily as a homodimer in solution and that these dimers associate to form a complex nucleoprotein structure when bound to the HSV origin of replication. We also show that UL9 is an ATP-dependent helicase, capable of unwinding partially duplex DNA in a sequence-independent manner. Although the helicase activity of UL9 is demonstrable on short duplex substrates in the absence of single-stranded DNA-binding proteins, the HSV single-stranded DNA-binding protein ICP8 (but not heterologous binding proteins) stimulates UL9 to unwind long DNA sequences of over 500 bases. We were not able to demonstrate unwinding of fully duplex DNA sequences containing the HSV origin of replication. However, in experiments designed to detect origin-dependent unwinding, we did find that UL9 wraps supercoiled DNA independent of sequence or ATP hydrolysis.  相似文献   

18.
Thymidine kinase derived from LMTK+ does not exhibit thymidylate kinase activity. However, protein isolated by affinity column chromatography from thymidine kinase-deficient mouse cells (LMTK-) infected by herpes simplex virus type 1 shows thymidylate kinase activity in addition to thymidine kinase and deoxycytidine kinase activities. The virus-induced multifunctional enzyme has a molecular weight of 85,000, whereas the molecular weight of thymidylate kinase from uninfected LMTK- mouse cells is 71,000. The virus-induced enzyme has a Km for thymidine of 0.8 micromolar, and for thymidylate of 25 micromolar, and for thymidylate of 25 micromolar; the ratio of Vmax for thymidylate kinase to thymidine kinase is 1.7. When subjected to isoelectric focusing, thymidylate kinase activity is not separated from thymidine kinase activity, and even though four peaks of activity are observed they have a constant ratio of thymidylate kinase to thymidine kinase activity. The isoelectric points (pI) of these four peaks are 4.8, 5.8, 6.2, and 6.6, respectively. Thymidylate kinase, derived from uninfected cells when subjected to isoelectric focusing, separates into a major component with an isoelectric point at pH 8.2 and a minor component at pH 7.7. Although thymidine and thymidylate kinase activities derived from the virus-infected cells cannot be separated either by affinity column chromatography, glycerol density gradient centrifugation, or isoelectric focusing, there is a differential rate of inactivation when the enzyme is subjected to incubation at 37 degrees, with thymidylate kinase activity being more labile than thymidine kinase activity.  相似文献   

19.
Purification of herpes simplex virus glycoprotein C (gC) in microgram amounts yielded sufficient material for an analysis of its secondary structure. Purification was facilitated by using the mutant virus gC-3, which bears a point mutation that interrupts the putative hydrophobic membrane anchor sequence, causing the secretion of gC-3 protein into the cell culture medium. gC-3 protein was purified by size fractionation of concentrated culture medium from infected cells on a gel filtration column of Sephacryl S-200, followed by immunoaffinity chromatography on a column constructed of gC-specific monoclonal antibodies cross-linked to a protein A-Sepharose CL-4B matrix. Purified gC-3 had a molecular weight of 130,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the size expected for gC, was reactive with gC-specific monoclonal antibodies in protein immunoblots, and contained amino acid sequences characteristic of gC as determined by radiochemical amino acid microsequence analyses. Polyclonal antisera obtained from a rabbit immunized with gC-3 reacted with wild-type gC in immunoprecipitation, enzyme immunoassay, and immunoelectroblot (western blot) assays. Deglycosylation by treatment with trifluoromethanesulfonic acid reduced the molecular weight of gC-3 by approximately 35%. Analyses of both native and deglycosylated gC-3 by Raman spectroscopy showed that the native molecule consists of about 17% alpha-helix, 24% beta-sheet, and 60% disordered secondary structures, whereas deglycosylated gC-3 consists of about 8% alpha-helix, 10% beta-sheet, and 81% disordered structures. These data were in good agreement with the 11% alpha-helix, 18% beta-sheet, 61% beta-turn, and 9% disordered structures calculated from Chou-Fasman analysis of the primary sequence of gC-3.  相似文献   

20.
The human T-cell leukemia virus type I Tax protein (HTLV-I Tax) is known as a trans-activating factor for a variety of genes, including those of cytokines. Here, we show that Tax is capable of activating the herpes simplex virus thymidine kinase (HSV-TK) promoter in certain mammalian cell lines. In murine NIH 3T3 fibroblasts and human HeLa cells, trans-activation by Tax was remarkably strong, whereas in human chondrocytic HCS-2/8 and monkey kidney Cos-7 cells, the responsiveness of the TK promoter to Tax was poor. Deletion analysis revealed that one of the two previously described Sp1 sites is required for the Tax responsiveness, whereas the CTF binding site is not. The results suggest possible interactions between the oncogenic Tax protein and the viral TK in coinfected cells in vivo. Care should be taken in the context of HTLV-I research, as the HSV-TK promoter has been widely used in molecular biology and gene therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号