首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B cells play an important role in rheumatoid arthritis, but whether they are required as autoantibody-producing cells as well as APCs has not been determined. We assessed B cell autoantibody and APC functions in a murine model of autoimmune arthritis, proteoglycan (PG)-induced arthritis, using both B cell-deficient mice and Ig-deficient mice (mIgM) mice that express an H chain transgene encoding for membrane-bound, but not secreted, IgM. The IgH transgene, when paired with endogenous lambda L chain, recognizes the hapten 4-hydroxy-3-nitro-phenyl acetyl and is expressed on 1-4% of B cells. B cell-deficient and mIgM mice do not develop arthritis after immunization with PG. In adoptive transfer of PG-induced arthritis into SCID mice, T cells from mIgM mice immunized with PG were unable to transfer disease even when B cells from PG-immunized wild-type mice were provided, suggesting that the T cells were not adequately primed and that Ag-specific B cells may be required. In fact, when PG was directly targeted to the B cell Ig receptor through a conjugate of 4-hydroxy-3-nitrophenyl acetyl-PG, T cells in mIgM mice were activated and competent to transfer arthritis. Such T cells caused mild arthritis in the absence of autoantibody, demonstrating a direct pathogenic role for T cells activated by Ag-specific B cells. Transfer of arthritic serum alone induced only mild and transient arthritis. However, both autoreactive T cells and autoantibody are required to cause severe arthritis, indicating that both B cell-mediated effector pathways contribute synergistically to autoimmune disease.  相似文献   

2.
The role that B lymphocytes and/or antibodies play in the healing of Leishmania major infections in genetically resistant C3H/HeN mice was investigated by monitoring the course of infection in animals that had been B cell depleted by treatment from birth with anti-IgM sera (mu-suppressed). L. major infection of mu-suppressed C3H/HeN mice produced lesions that were significantly larger than those induced in control animals, and failed to heal. Moreover, vaccinated mu-suppressed mice also developed chronic nonhealing infections, although their lesions were initially smaller than those developed by nonvaccinated mu-suppressed controls. The enhanced susceptibility of mu-suppressed mice could be completely overcome by adoptive transfer of T lymphocytes from mice that had spontaneously healed their lesions, and to a lesser extent by T lymphocytes from normal animals. Anti-leishmanial antibody responses were completely absent in mu-suppressed mice, regardless of whether they were lymphocyte reconstituted, whereas delayed type hypersensitivity (DTH) to leishmanial antigens was present in normal and mu-suppressed animals. The ability of immune T cells to protect mu-suppressed mice without restoring humoral responsiveness clearly indicates that antibodies are not necessary for healing leishmanial infections. Instead, the observed effect of mu-suppression argues that B lymphocytes are required for the generation of an effector T cell population, apparently unrelated to DTH, which mediates the healing of cutaneous lesions. These results thus provide the first evidence for the B cell and/or Ig dependency of a T cell population that is critical for the development of immunity against a microbial agent.  相似文献   

3.
Type III pneumococcal polysaccharide (S3) coupled to spleen cells (S3-SC) has been shown to activate S3-specific Ts and Tcs in mice. Ts activation required I-J identity between carrier SC and Ts donors whereas I-A identity was required for Tcs activation. The carrier SC therefore presumably function as APC for Ts and Tcs activation by S3 since they are apparently not represented by APC present in the Ts and Tcs donors. The properties of the APC required for activation of S3-specific Ts and Tcs were determined by coupling S3 to various spleen cell subpopulations and assessing the ability of the various S3-SC populations to activate Ts and Tcs. The results indicate that Ts and Tcs are preferentially activated when S3 is presented on distinct cell types. S3-specific Ts were activated when S3 was coupled to plastic adherent cells. These cells are nonadherent to anti-Ig and nonfunctional in cyclophosphamide (Cy)-treated mice and their function is eliminated following treatment of cells with either anti-I-A or anti-I-J and C. In contrast, S3-specific Tcs were activated when S3 was coupled to anti-Ig adherent SC which bear I-A and the B cell marker J11d. These cells are functional in Cy-treated mice and their function is resistant to treatment with anti-I-J and C. Thus presentation of S3 on distinct cell types results in the preferential activation of T cells having opposing immunoregulatory function.  相似文献   

4.
Immune B cells induce effector T suppressor cells in vitro. The B cells act as antigen-presenting cells, and express both I-A and I-J determinants. Antigen and I-J determinants are required for the induction of suppressor T cells by immune B cells, but I-A determinants are not. These findings indicate that precursors of suppressor T cells appear to recognize antigen in the context of I-J determinants on the surface of immune B cells.  相似文献   

5.
The ability of UV-treated splenic adherent cells (SAC) to induce T cell-mediated immunity and suppressor T cells was analyzed in the 4-hydroxy-3-nitrophenyl acetyl (NP) system. UV irradiation of 0.88 KJ/m2 decreased the capacity of NP-coupled SAC to induce delayed-type hypersensitivity (DTH) responses by about 50%. The ability of uncoupled UV-treated SAC to induce allogeneic DTH response was also imparied, indicating that UV-treated SAC are inefficient at inducing DTH in these systems. TS1 induction by UV-treated NP-SAC was evaluated TS1 induction by UV-treated NP-SAC was evaluated by using adherent cells that were subjected to the same dose of UV irradiation that impaired DTH induction. Intravenous administration of 10(3) or 10(4) UV-treated NP-coupled SAC induced TS1 cells with the same efficiency as non-UV-irradiated cells. The TS1 cells induced in this fashion were antigen specific. Furthermore, to establish that the antigen was not reprocessed by the host, I-J-mismatched, UV-treated NP-SAC were unable to induce TS1 cells. The population of antigen-presenting cells responsible for TS1 induction appear to express both I-A and I-J determinants. TS2 induction by UV-treated accessory cells was also analyzed. TSF1 inducer suppressor factor was pulsed onto graded numbers of either normal or UV-treated adherent cells. The same levels of antigen-specific suppression were induced with normal and UV-treated cells. Finally, TS3 induction by UV-treated NP-SAC was analyzed. UV-treated and normal NP-SAC (3 X 10(3] induced antigen-specific suppression of NP DTH responses. I-J-mismatched, UV-treated NP-SAC failed to induce suppression, suggesting that the hapten was not reprocessed by the host under these experimental conditions. The accessory cell population responsible for TS3 induction appears to express both I-A and I-J determinants. Thus, there are at least two functional distinctions between the antigen-presenting cells that induce immunity vs those that induce suppressor cells. First, UV treatment selectively impairs the antigen-presenting cells, which activate the positive limb of the immune response. Second, I-J determinants appear to be specifically associated with the SAC, which induce suppressor T cells. Although these criteria can be used to distinguish the accessory cells involved in suppressor cell pathways from those controlling helper T cell induction, there were no discernible phenotypic differences among the accessory cells that induce the TS1, TS2, and TS3 subsets.  相似文献   

6.
Systemic administration of Salmonella to tumor-bearing mice leads to the preferential accumulation within tumor sites and retardation of the tumor growth. Host factors including innate and adaptive immune responses influence Salmonella-induced antitumor activity. Antitumor activities of Salmonella are not only determined by the tumor regression but also by the host immune response. Herein, we demonstrated that B cells play an important role in the antitumor activity mediated by Salmonella. Body weight and survival of B cell-deficient mice were decreased compared with wild-type, CD8(+) cell-deficient, or CD4(+) cell-deficient mice after Salmonella administration. Although Salmonella accumulated within the tumors in B cell-deficient mice, the bacterial loads of healthy organs were higher than those in wild-type mice. The inflammation cytokine and bacteremia were found in B cell-deficient mice after Salmonella treatment. When Salmonella accumulated within the tumor, B cells inhibited the dissemination of Salmonella to other healthy organs. The depletion of host B cells resulted in a noticeably higher total number of Salmonella in the tumor and inhibited tumor growth. Meanwhile, B cell-depletive and B cell-adoptive transfer of serum experiments demonstrated that the natural antibody produced by B cell takes part in the control of Salmonella dissemination in tumor-bearing mice. In this study, we want to address the mechanisms of incorporating host immunoresponse as a way to augment the antitumor activities of Salmonella.  相似文献   

7.
This study focuses on the specific CD4+ T cell requirement for optimal induction of cytotoxicity against MHC class II negative autologous tumors (AuTu) collected from patients with various types of cancer at advanced stages. CD4+ T cells were induced in cultures of cancer patients' malignant effusion-associated mononuclear cells with irradiated AuTu (mixed lymphocyte tumor cultures (MLTC)) in the presence of recombinant IL-2 and recombinant IL-7. Tumor-specific CD4+ T cells did not directly recognize the AuTu cells, but there was an MHC class II-restricted cross-priming by autologous dendritic cells (DCs), used as APC. CD8+ CTL, also induced during the MLTC, lysed specifically AuTu cells or DCs pulsed with AuTu peptide extracts (acid wash extracts (AWE)) in an MHC class I-restricted manner. Removal of CD4+ T cells or DCs from the MLTC drastically reduced the CD8+ CTL-mediated cytotoxic response against the AuTu. AWE-pulsed DCs preincubated with autologous CD4+ T cells were able, in the absence of CD4+ T cells, to stimulate CD8+ T cells to lyse autologous tumor targets. Such activated CD8+ T cells produced IL-2, IFN-gamma, TNF-alpha, and GM-CSF. The process of the activation of AWE-pulsed DCs by CD4+ T cells could be inhibited with anti-CD40 ligand mAb. Moreover, the role of CD4+ T cells in activating AWE-pulsed DCs was undertaken by anti-CD40 mAb. Our data demonstrate for the first time in patients with metastatic cancer the essential role of CD4+ Th cell-activated DCs for optimal CD8+ T cell-mediated killing of autologous tumors and provide the basis for the design of novel protocols in cellular adoptive immunotherapy of cancer, utilizing synthetic peptides capable of inducing T cell help in vivo.  相似文献   

8.
Mice with targeted disruptions in the T-cell receptor alpha gene (TCRalpha-/-) spontaneously develop inflammatory intestinal lesions with extensive B-cell lamina propria infiltrates. Cryptosporidium parvum infection accelerates intestinal lesion formation in TCRalpha-/- mice. In the present study, TCRalpha-/- mice were crossed with JH-/- (B-cell-deficient) mice and challenged with C. parvum to determine if B cells are required for intestinal lesion development. TCRalpha-/- x JH-/- mice challenged with C. parvum, either as neonates or adults, became persistently infected, whereas TCRalpha-/+ x JH-/+ heterozygote control mice cleared the parasite. Cryptosporidium parvum colonization of TCRalpha-/- x JH-/- mice was heaviest in the distal ileum, with fewer parasites detected in the cecum and distal colon. Despite persistent infection, TCRalpha-/- x JH-/- mice did not develop inflammatory or hyperplastic intestinal lesions as detected in C. parvum-infected TCRalpha-/- mice. These findings demonstrate that B cells are a necessary component for the development of inflammatory intestinal lesions of C. parvum-infected TCRalpha-/- mice.  相似文献   

9.
The requirement for the signals in induction of cytolytic T lymphocytes (CTL) has been investigated. C57BL/6 X CBA/T6 F1 spleen cells stimulated with the lectin leukoagglutinin (L-A) failed to show CTL activity in a PHA-facilitated assay, although L-A-activated splenic T cells were able to respond to T cell growth factor (TCGF). Concanavalin A (Con A) on the other hand was able to induce cytolytic activity from CTL-P, as well as to render splenic T cells responsive to TCGF. Furthermore, L-A-activated splenic T cells could generate cytolytic activity upon subsequent culture in secondary mixed leukocyte culture supernatant (2 degrees MLC SN). In contrast, EL-4-derived SN (EL-4 SN) was unable to induce cytolytic activity from L-A-activated spleen cells. In addition, proliferation of L-A-activated spleen cells cultured in EL-4 SN was similar to those cultured in 2 degrees MLC SN. Nonactivated spleen cells were totally unresponsive to both SN in proliferation and generation of CTL. Analysis of T cell clones for the production of a factor necessary for induction of cytolytic activity revealed that both cytolytic and noncytolytic T cell clones were able to produce a factor(s) for the generation of cytolytic activity from L-A-activated T cells. On the other hand, SN from certain antigen-stimulated T cell clones produced factors capable of inducing cytocytic activity by L-A-activated T cells only in the presence of EL-4 SN. Neither EL-4 SN nor cloned T cell SN alone had such a capacity. The nature of the necessary lymphokines in the SN from the clone cells or from the EL-4 is unknown. In the case of the EL-4 SN, it is not known whether the presence of TCGF plays a role or whether that role is perhaps more differentiative than proliferative. This study provides evidence that the induction of CTL from CTL-P can be dissociated into activation, which is required to render T cells responsive to second signals, and differentiation, which is mediated by two different factors.  相似文献   

10.
Ag-primed B cells must express cell-surface IgM, but not IgD or Ia Ag, and must remain metabolically active, in order to activate suppressor T cells (Ts) specific for type III pneumococcal polysaccharide. Ag-primed B cells that were gamma-irradiated with 1000r, or less, retained the ability to activate Ts; however, Ag-primed B cells exposed to UV light were not able to do so. gamma-Irradiated and UV-treated Ag-primed B cells both expressed comparable levels of cell-surface IgM, and both localized to the spleen after in vivo transfer; neither could proliferate in vitro in response to mitogens. By contrast, gamma-irradiated primed B cells were still able to synthesize proteins, whereas UV-treated primed B cells could not. These findings suggest that in order for Ag-primed B cells to activate Ts, they must a) express cell-associated IgM (sIgM) antibody bearing the idiotypic determinants of antibody specific for type III pneumococcal polysaccharide, and b) be able to synthesize protein for either the continued expression of sIgM after cell transfer, or for the elaboration of another protein molecule that is also required for the activation of Ts; this molecule does not appear to be Ia Ag.  相似文献   

11.
An in vitro method for the generation of effector suppressor cells (Ts3) was developed. By utilizing this protocol, it was possible to investigate both the cellular and genetic requirements for suppressor cell induction. It was determined that populations containing Ts3 cells can be induced after a 4-day culture of spleen cells and antigen. These Ts3 cells are similar to Ts3 cells generated by in vivo immunization. Both populations are I-J+, bind NP hapten, bind NP hapten, bear receptors which share NPb idiotypic determinants with anti-NP antibodies, function during the effector phase of the immune response, and require activation with Ts2 cells. Generation of Ts3-containing populations required both nylon wool-nonadherent T cells and a nylon-adherent, B cell-enriched population from an Igh-identical donor. T cells cultured with antigen alone or with syngeneic macrophages and antigen did not develop suppressive activity. Lytic treatment of the nylon-adherent population with a B cell-specific monoclonal antibody (J11d) removed the ability to generate suppressor cells. These results imply that the induction of suppressor T cells requires B lymphocytes, and that this induction process is dependent on Igh-linked gene products.  相似文献   

12.
Dendritic cells (DC) play a pivotal role in the control of T cell immunity due to their ability to stimulate naive T cells and direct effector function. Murine and human DC are composed of a number of phenotypically, and probably developmentally, distinct subsets, which may play unique roles in the initiation and regulation of T cell responses. The skin is populated by at least two subsets of DC: Langerhans cells (LC), which form a contiguous network throughout the epidermis, and dermal DC. LC have classically been thought vital to initiate T cell responses to cutaneous Ags. However, recent data have highlighted the importance of dermal DC in cutaneous immunity, and the requirement for LC has become unclear. To define the relative roles of LC and dermal DC, we and others generated mouse models in which LC were specifically depleted in vivo. Unexpectedly, these studies yielded conflicting data as to the role of LC in cutaneous contact hypersensitivity (CHS). Extending our initial finding, we demonstrate that topical Ag is inefficiently transported to draining lymph nodes in the absence of LC, resulting in suboptimal priming of T cells and reduced CHS. However, dermal DC may also prime cutaneous T cell responses, suggesting redundancy between the two different skin DC subsets in this model.  相似文献   

13.
The Tec family kinase Itk plays a critical role in signal transduction downstream of the T cell antigen receptor and has been implicated in the activation of phospholipase C-gamma1, a key regulator of calcium mobilization and extracellular signal-regulated kinase (ERK) activation. We have shown previously that Itk is regulated by an activating transphosphorylation event in which Tyr-511 in the kinase domain is phosphorylated by Lck (Heyeck, S. D., Wilcox, H. M., Bunnell, S. C., and Berg, L. J. (1997) J. Biol. Chem. 272, 25401-25408). In this study, we present evidence for another mode of regulation for Itk, the autophosphorylation of Tyr-180 in the Src homology 3 (SH3) domain. To investigate the role of Itk trans- and autophosphorylation in T cell signaling, a retroviral transduction system was used to introduce different versions of Itk into Itk-deficient primary T cells. We report that Itk mutated at either the trans- or the autophosphorylation site is unable to fully restore cytokine production and ERK activation in the Itk-deficient cells; Itk-Y511F is severely defective, whereas Itk-Y180F has partial activity. Because phosphorylation at Tyr-180 is predicted to interfere with ligand binding by the SH3 domain, an SH3 point mutant that cannot bind ligand was also examined and found to be unable to restore function to the Itk-/- cells. These data provide new insights into the complex regulation of Itk in primary T cells.  相似文献   

14.
Continuous gastric intubation of mice with the T cell-dependent antigen sheep erythrocytes (SRBC) leads to a state of systemic unresponsiveness to parenteral SRBC challenge, a state termed oral tolerance. The systemic unresponsiveness of mice rendered orally tolerant to SRBC, however, is converted to humoral immune responsiveness by adoptive transfer of effector T contrasuppressor (Tcs) cells. In this study, the authors have isolated and characterized the Tcs cell subset, from the spleens of orally immunized mice, which abrogates oral tolerance. This Tcs cell is a novel cell type, which can be separated from functional T suppressor (Lyt-2+) and T helper (L3T4+) cells, and the effector Tcs cell exhibits a Lyt-1+, 2-, L3T4- phenotype. Furthermore, contrasuppression is not mediated by B cells, including those of the Lyt-1+ phenotype. Adoptive transfer of splenic Lyt-1+, 2-, L3T4- T cells from C3H/HeJ mice given oral SRBC for 21 to 28 days and splenic Lyt-1+, 2-, L3T4- T cells of C3H/HeN mice orally immunized for a shorter interval abrogated oral tolerance. Furthermore, separation of Lyt-1+ T cells into L3T4+ and L3T4- subsets by flow cytometry resulted in Lyt-1+, L3T4+ T cells with helper but not contrasuppressor function, whereas the Lyt-1+, L3T4- T cell fraction abrogated oral tolerance even though it was without helper activity. This Tcs cell subset was also effective when added to cultures of tolerized spleen cells derived from SRBC-fed mice. The effector Tcs cells are antigen-specific, because Tcs cells from SRBC-immunized mice reverse tolerance to SRBC but not to horse erythrocytes (HRBC), and Tcs cells from HRBC-immunized mice reverse tolerance to HRBC but not to SRBC. When splenic T3 (CD3)-positive T cells (Lyt-1+, 2-, and L3T4-) were separated into Vicia villosa-adherent and nonadherent subpopulations, active contrasuppression was associated with the T3-positive and Vicia villosa-adherent T cell fraction. Thus, a distinct Lyt-1+, 2-, L3T4- T cell subset that contains a T3-T cell receptor complex, which can regulate oral tolerance, is present in spleens of orally immunized mice.  相似文献   

15.
The objective of the present investigation was to evaluate the requirement for increased ornithine decarboxylase (ODC) activity and polyamine biosynthesis in the induction of cytolytic T lymphocytes (CTL). In this regard, we have utilized alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. DFMO treatment completely abrogated Con A-induced NW T-cell ODC activity. Similarly, DFMO treatment reduced putrescine and spermidine biosynthesis 100 and 87% respectively by the end of a 48-hr incubation period. Polyamine depletion reduced the Con A-mediated polyclonal induction of CTL by 52 and 81% at 24 and 48 hr of culture, respectively. The effect of DFMO on CTL induction could be reversed by the addition of exogenous putrescine. These data indicate that the observed effects of DFMO on CTL induction were mediated through inhibition of polyamine biosynthesis. Therefore, increased ODC activity and polyamine biosynthesis are required for optimal CTL induction. Furthermore, polyamine depletion did not impair IL-2 production; however, IL-2-dependent proliferation was reduced. These data are the first to discriminate between the requirement for polyamines with regard to IL-2 responsiveness, rather than IL-2 production, during a primary T-cell mitogenic response.  相似文献   

16.
Cultures of normal spleen cells with anti-idiotypic antibody (anti-Id) or antigen B (AgB)-specific T suppressor factor (Tsf1) in mini-Marbrook chambers for 4 days at 37 degrees C lead to the in vitro induction of AgB-specific T suppressor (TS) cells. These TS cells significantly suppress a secondary AgB-specific IgE response, but they do not affect a secondary AgB-specific IgG response. Depletion of both B cells and macrophages from normal spleen cells by panning on anti-Ig-coated petri dishes provides an enriched T cell population. These enriched T cells when cultured with anti-Id or Tsf1 in mini-Marbrook chambers do not produce AgB-specific TS cells, and mice treated with cells harvested from the mini-Marbrook chambers have normal secondary AgB-specific IgG and IgE responses. The addition of as few as 1000 bone marrow-derived macrophages (BMDM) to cultures of the enriched T cells with anti-Id, or Tsf1 restores the ability of these cultures to produce significant levels of AgB-specific TS cells. Further studies reveal that the macrophage population must be histocompatible and express a cell surface I-J antigen. Attempts to pulse BMDM with anti-Id or Tsf1 at 4 degrees C and to culture in mini-Marbrook chambers 10(3) pulsed BMDM with enriched T cells were unsuccessful in producing AgB-specific TS cells. However, pulsing BMDM with anti-Id or Tsf1 at 37 degrees C, and adding 10(3) of these pulsed BMDM to enriched T cells in culture led to the formation of significant levels of AgB-specific TS cells.  相似文献   

17.
We have been studying delayed hypersensitivity (DH) to herpes simplex virus (HSV) in order to examine the role of this response in host defense against acute and recurrent HSV infections. In previous reports the basic parameters of DH to HSV have been characterized by using a murine ear swelling model, and also the regulation of DH to HSV induced by i.v. injection of the virus. In this paper, we describe a murine protection system and our use of the ability to specifically regulate DH to HSV to examine the correlation between T cells that transfer DH (TDH) and cells that transfer protection from acute HSV infection. Both DH and protection can be transferred with lymph node cells from mice immunized subcutaneously 4 days previously. The effector cell appears to be a T cell, because serum from these donors confers no protection and treatment of immune cells with anti-Thy-1.2 plus complement reduced their ability to protect. Tolerance of DH to HSV was induced by i.v. injection 7 days before subcutaneous immunization. Tolerized mice were unable to generate protective cells. Furthermore, tolerized mice contained suppressor T cells that suppressed not only DH but also the development of protective cells. Regulation of protective cells was shown to be virus specific, because mice tolerized with vesicular stomatitis virus (VSV) were not impaired in their ability to generate T cells that protected from HSV infection. The correlation between the TDH cell and cells that transfer protection from acute HSV infection is discussed.  相似文献   

18.
Intravenous injection at proper time of irradiated reticulum cell sarcoma cells into SJL mice immunized with dinitrophenylated (DNP) keyhole limpet hemocyanin inhibits the production of anti-DNP IgG1 and IgG2 antibodies.  相似文献   

19.
Using normal human lymphocytes isolated by sedimentation and cotton column adherence, we have developed a reliable assay of immunosuppression of PHA-induced blastogenesis by serum from selected melanoma patients. These lymphocyte cultures contained both responder cells (subpopulation x) and regulator cells (subpopulation y). Lymphocytes isolated by gradient centrifugation on sodium metrizoate-Ficoll contained responder cells (x) but no regulator cells (y). Cultures of lymphocytes isolated by this method were stimulated by PHA but were not suppressed by the addition of melanoma serum. When lymphocytes were isolated by a cotton column adherence/Lymphoprep centrifugation-double separation, subpopulations (x) and (y) were isolated. We have established that both subpopulations are necessary for suppression to occur, and that (y) operates as the regulator of (x). Finally, by manipulating B cell and T cell populations isolated by nylon column adherence or AET rosette separation, we have determined that the regulator ability of subpopulation (y) is the result of B cell activation of suppressor T cells.  相似文献   

20.
The cellular origin of signals that regulate pancreatic beta cell induction is not clearly defined. Here, we investigate the seeming paradox that Hedgehog/Smoothened signaling functions during gastrulation to promote pancreatic beta cell development in zebrafish, yet has an inhibitory role during later stages of pancreas development in amniotes. Our cell transplantation experiments reveal that in zebrafish, Smoothened function is not required in beta cell precursors. At early somitogenesis stages, when the zebrafish endoderm first forms a sheet, pancreatic beta cell precursors lie closest to the midline; however, the requirement for Smoothened lies in their lateral neighbors, which ultimately give rise to the exocrine pancreas and intestine. Thus, pancreatic beta cell induction requires Smoothened function cell-nonautonomously during gastrulation, to allow subsequent intra-endodermal interactions. These results clarify the function of Hedgehog signaling in pancreas development, identify an unexpected cellular source of factors that regulate beta cell specification, and uncover complex patterning and signaling interactions within the endoderm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号