首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hinge-region of the lac repressor plays an important role in the models for induction and DNA looping in the lac operon. When lac repressor is bound to a tight-binding symmetric operator, this region forms an alpha-helix that induces bending of the operator. The presence of the hinge-helices is questioned by previous data that suggest that the repressor does not bend the wild-type operator. We show that in the wild-type complex the hinge-helices are formed and the DNA is bent, similar to the symmetric complex. Furthermore, our data show differences in the binding of the DNA binding domains to the half-sites of the wild-type operator and reveal the role of the central base-pair of the wild-type operator in the repressor-operator interaction. The differences in binding to the operator half-sites are incorporated into a model that explains the relative affinities of the repressor for various lac operator sequences that contain left and right half-sites with different spacer lengths.  相似文献   

2.
A model is suggested for the lac repressor binding to the lac operator in which the repressor polypeptide chain sequences from Gly 14 to Ala 32 and from Ala 53 to Leu 71 are involved in specific interaction with operator DNA. A correspondence between the protein and DNA sequences is found which explains specificity of the repressor binding to the lac operator. The model can be extended to describe specific binding of other regulatory proteins to DNA.  相似文献   

3.
How Lac repressor finds lac operator in vitro.   总被引:6,自引:0,他引:6  
Filter-binding and gel mobility shift assays were used to analyse the kinetics of the interaction of Lac repressor with lac operator. A comparison of the two techniques reveals that filter-binding assays with tetrameric Lac repressor have often been misinterpreted. It has been assumed that all complexes of Lac repressor and lac operator DNA bind with equal affinity to nitrocellulose filters. This assumption is wrong. Sandwich or loop complexes where two lac operators bind to one tetrameric Lac repressor are not or are only badly retained on nitrocellulose filters under normal conditions. Taking this into account, dimeric and tetrameric Lac repressor do not show any DNA-length dependence of their association and dissociation rate constants when they bind to DNA fragments smaller than 2455 base-pairs carrying a single symmetric ideal lac operator. A ninefold increased association rate to ideal lac operator on lambda DNA is observed for tetrameric but not dimeric Lac repressor. It is presumably due to intersegment transfer involving lac operator-like sequences.  相似文献   

4.
Several lac repressor mutants have been isolated which repress beta-galactosidase synthesis in Escherichia coli up to 200-fold. They do so by binding specifically to particular symmetrical lac Oc operator variants. The mutations in the lac repressor are localized in two separate parts of the recognition helix comprising (i) residues 1 and 2 which interact with base pairs 4 and 5 of lac operator and (ii) residue 6 which recognizes operator base pair 6. Mutations of residues 1 and 2 may be combined with a mutation of residue 6. The resulting mutant protein binds specifically to an operator variant with three symmetric exchanges in base pairs 4, 5 and 6.  相似文献   

5.
The interaction between protein and DNA is usually regulated by a third species, an effector, which can be either a protein or a small molecule. Convenient methods capable of detecting protein-DNA interaction and its regulation are highly desirable research tools. In the current study, we developed a method to directly “visualize” the interaction between a protein-DNA pair and its effector through the coupling with gold nanoparticles (AuNPs). As a proof-of-concept experiment, we constructed a model system based on the interaction between the lac repressor (protein) and operator (DNA) and its interplay with the lac operon inducer isopropyl β-d-1-thiogalactopyranoside (IPTG, which inhibits the interaction between the lac repressor and operator). We coated AuNPs with the lac operator sequences and mixed them with the lac repressor. Because the lac repressor homotetramer contains two DNA binding modules, it bridged the particles and caused them to aggregate. We demonstrated that the assembly of DNA-modified AuNPs correlated with the presence of the corresponding protein and effector in a concentration-dependent manner. This AuNP-based platform has the potential to be generalized in the creation of reporter and detection systems for other interacting protein-DNA pairs and their effectors.  相似文献   

6.
7.
Tight binding mutants of Lac repressor exhibit complex repression phenomena. In this work, in vivo Lac operator binding of three such mutants of E. coli Lac repressor (X86: ser 61-leu, l12: pro 3-tyr and the double mutant l12X86: pro 3-tyr, ser 61-leu) was analyzed. Repression of beta-galactosidase synthesis controlled by ideal lac operator and its 27 symmetric operator variants containing each possible base-pair at each single half-operator position in the presence of the tight-binding Lac repressor mutants was determined. The average increase of repression with all operator variants was about 3 fold with the X86 mutant. It was about 4 fold with the l12 mutant and about 2 fold with the double mutant l12X86 as compared to wildtype Lac repressor. The X86 mutant showed the same increase of affinity to all operator variants, whereas the l12 and l12X86 mutants exhibited lower repression with some variants than with most others. These results suggest that the X86 mutant has gained no additional specificity. In contrast the l12 mutant and the l12X86 mutant exhibit a relaxed specificity for certain base pairs in positions 1 and 3 of lac operator. This suggests that the extreme N-terminus of Lac repressor may interact with the inner base-pairs in the minor groove.  相似文献   

8.
A system has been developed for facile generation and characterization of mutant lac operator sites, free of competing pseudo operator sequences. The interaction of lac repressor with these sites has been investigated by the nitrocellulose filter binding assay. The equilibrium binding affinity for each of three single-site changes was reduced by more than three orders of magnitude relative to the wild-type operator under standard assay conditions. The free-energy changes associated with single base-pair substitutions are not additive. We propose that adaptations in the recognition surface of the repressor involving significant trade-offs between electrostatic versus non-electrostatic interactions and between enthalpic versus entropic contributions to the binding free energy occur, in order to achieve the most stable complex with a given DNA sequence.  相似文献   

9.
10.
A model is proposed for lac repressor-lac operator binding which accounts for the tetrameric subunit structure of the lac repressor and for factors involved in the strength, specificity and regulation of repressor-operator interaction. The model employs a π-helix in the amino terminal 25 residues of the lac repressor whereby three tyrosine residues of each subunit intercalate between base pairs of the lac operator. For the outer palindromic sequences of the operator, base specificity is provided by amino acids adjacent to the carboxyl sides of the tyrosine residues of two of the subunits. The inner palindromic sequences which bind the other two subunits form stems of hairpin loops in the operator. Base specificity for these two subunits is provided by amino acids adjacent to the amino sides of the tyrosine residues. In addition to 12 intercalated tyrosine residues, the model provides for a total of at least eight electrostatic interactions and ten sequence-specific hydrogen bonds.  相似文献   

11.
12.
The lac repressor-operator system is a model system for understanding protein-DNA interactions and allosteric mechanisms in gene regulation. Despite the wealth of biochemical data provided by extensive mutations of both repressor and operator, the specific recognition mechanism of the natural lac operators by lac repressor has remained elusive. Here we present the first high-resolution structure of a dimer of the DNA-binding domain of lac repressor bound to its natural operator 01. The global positioning of the dimer on the operator is dramatically asymmetric, which results in a different pattern of specific contacts between the two sites. Specific recognition is accomplished by a combination of elongation and twist by 48 degrees of the right lac subunit relative to the left one, significant rearrangement of many side chains as well as sequence-dependent deformability of the DNA. The set of recognition mechanisms involved in the lac repressor-operator system is unique among other protein-DNA complexes and presents a nice example of the adaptability that both proteins and DNA exhibit in the context of their mutual interaction.  相似文献   

13.
Proteins which recognize specific sequences of DNA play a fundamental role in the regulation of protein synthesis in all organisms. A particular helix of the bacterial protein lac repressor recognizes the bases in the major groove of the lac operator. We show that the first two residues of this recognition helix interact independently with two base pairs. This allows us in many cases to predict repression as an indicator of strength of the repressor-operator complex. Rules of recognition can be derived for 16 symmetric operators. They also apply to the gal repressor and possibly to other bacterial repressors.  相似文献   

14.
Probing co-operative DNA-binding in vivo. The lac O1:O3 interaction   总被引:10,自引:0,他引:10  
The lac primary (O1) and weak upstream pseudo (O3) operators contained on a plasmid were footprinted in vivo in order to determine whether they act co-operatively in binding lac repressor in the cell. The occupancy at O3 by lac repressor was substantially reduced upon deletion of the lac primary operator, demonstrating co-operativity at a distance. Plots of operator occupancy versus active repressor concentration were obtained for each operator by treating the cells with different amounts of the lac inducer isopropyl-beta-D-thiogalactoside and probing lac repressor binding. This analysis can be used to obtain relative binding constants in vivo and demonstrates that O3 binds repressor only 10.3-fold less tightly than O1 in their co-operative interaction. The removal of DNA torsional tension in vivo by the use of coumermycin leads to the same loss of binding at O3 as does deleting O1. These in-vivo results are analogous to the in-vitro situation, where O3 binds repressor strongly in a DNA repression loop only on supercoiled templates.  相似文献   

15.
We have determined the sequences of the left and right operators of bacteriophages P22 and 21. The corresponding operators of the two phages have nearly identical sequences, thus explaining how the repressor of each phage recognizes the operators of the other. Experiments probing the binding of repressor and operator show that each operator contains three repressor binding sites. The repressor binding sites are 18 base-pair, partially symmetric sequences. The dispersed symmetric sequence A.T.AAG.…CTT.A.T is highly conserved among the 12 repressor binding sites of the two phages. Four virulent mutations have been sequenced; all of them alter bases in the conserved sequence.  相似文献   

16.
A new method for purification of specific DNA sequences using a solid phase technique has been developed based on a fusion between the Escherichia coli lac repressor gene (lacI) and the staphylococcal protein A gene (spa). The fusion protein, expressed in Escherichia coli, is active both in vivo and in vitro with respect to its three functional activities (DNA binding, IPTG induction, and IgG binding). The recombinant protein can be immobilized in a one-step procedure with high yield and purity using the specific interaction between protein A and the Fc-part of immunoglobulin G. The immobilized repressor can thereafter be used for affinity purification of specific DNA fragments containing the lac operator (lacO) sequence.  相似文献   

17.
18.
Mnt repressor is indirectly responsible for the maintenance of lysogeny of the phage P22. This repressor interacts with a 21-base pair operator DNA constituting within it a 17-base pair perfect 2-fold symmetric sequence whose bases make a direct contact with the protein. We have synthesized six 37-base pair DNAs consisting of 21 base pair natural operator and its modifications in which certain symmetrically situated GC base pairs were replaced systematically with ATs to understand their importance. The binding interaction studies of Mnt repressor to such natural and modified operator DNAs reported here indicate that the GCs close to the center of symmetry make major contacts with the protein whereas, GCs nearer to the periphery form weak contacts. Methylation protection experiments indicated that when the GCs near the center of symmetry were replaced with AT, the central GC became more accessible for dimethyl sulfate methylation with possible conformational change in DNA. The circular dichroism studies indicated that upon repressor binding conformational changes in DNA takes place with a possible increase in helicity of the repressor protein.  相似文献   

19.
We have examined the interactions of lac repressor and RNA polymerase with the DNA of the lac control region, using a method for direct visualization of the regions of DNA protected by proteins from DNAase attack. The repressor protects the operator essentially as reported by Gilbert and Maxam (1) with some small modifications. However, the evidence reported here concerning the binding of RNA polymerase to the DNA of the promoter mutant UV5 indicates that : 1) the RNA polymerase molecule binds asymmetrically to the promoter DNA, 2) RNA polymerase protects DNA sequences to within a few bases of the CAP binding site, suggesting direct interaction between polymerase and the CAP protein at this site, 3) RNA polymerase still binds to the promoter when repressor is bound to the operator, but fails to form the same extensive complex.  相似文献   

20.
The interaction between the lac repressor headpiece and a small operator DNA fragment has been examined by fluorescence and circular dichroism (c.d.) measurements. Binding of the headpiece to the DNA fragment induces a strong quenching of the fluorescence of its tyrosine residues. Quantitative analysis of the fluorescence data demonstrates that, in a first step, two headpieces bind very strongly to the DNA fragment then weaker binding occurs. C.d. demonstrates that the binding induces conformational changes of the DNA. The c.d. change produced upon binding of the first two headpieces differs from that induced upon binding of two further headpieces . Binding of the second pair of headpieces is similar to non-specific binding to non-operator DNA. The conformation of the operator DNA in the presence of two headpieces differs drastically from that in presence of lac repressor. Addition of the core to the lac operator does not induce any conformational change of the nucleic acids. These results are discussed with respect to the relative roles of core and headpieces in the lac repressor-lac operator interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号