首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mode of fibroblast growth enhancement by human interleukin-1   总被引:4,自引:1,他引:3  
Previous studies have demonstrated that interleukin-1 (IL-1) stimulates fibroblast growth (Schmidt, J. A., S. B. Mizel, D. Cohn, and I. Green. 1982. J. Immunol. 128:2177-2182) and binds to specific, high affinity receptors of BALB/c3T3 cells (Bird, T. A., and J. Saklatval. 1986. Nature (Lond.). 324:263-265, 266-268). We have investigated the mechanism of fibroblast growth stimulation by IL-1. Addition of fibroblast growth factor derived from platelets (PDGF) to a quiescent culture of BALB/c3T3 cells produced 8-10-fold increase in DNA synthesis during 24-h incubation. The cellular action of PDGF was mediated through competence induction and required synergistic action of plasma-derived factors for full mitogenic activity. When tested at a wide range of concentrations (0.1-100 pM), natural IL-1 or recombinant IL-1 produced only a maximum of 5-10% of DNA synthesis elicited in response to PDGF or serum. Induction of DNA synthesis required continuous presence of IL-1 and did not exhibit synergism with plasma. Competence induction and mitogenic stimulation by PDGF was associated with early induction of proteins P32, P38, P46-48, P75, and changes in cytoskeletal organization. Examination of these early cellular changes showed that IL-1 did not produce similar induction of cellular proteins and the morphological changes associated with growth stimulation. These results suggest that the mode of IL-1 action on BALB/c3T3 was not through competence induction. When IL-1 was added to cells rendered competent by brief exposure to PDGF, 10-15% additional DNA synthesis occurred during the first 24 h. Extended incubation of PDGF-treated cells in the presence of IL-1 revealed that the stimulation by IL-1 occurred predominantly during the subsequent cycle of DNA replication, wherein DNA synthesis reached three- to fivefold higher than the untreated cultures. We conclude (a) IL-1 alone is not a potent mitogen for BALB/c3T3 cells, and does not bring cells out of the growth arrest Go phase, (b) treatment with PDGF renders the cells more responsive to IL-1, (c) part of the IL-1 action on competent cells may be characterized as progression inducing activity, further, (d) our results indicate that action of IL-1 on PDGF-treated cells produces sustained DNA synthesis for an extended period, perhaps by preventing the entry of cells into growth arrest Go phase.  相似文献   

2.
Aggregation in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A D Robertson  J F Grutsch 《Cell》1981,24(3):603-611
Cultured peritoneal macrophages have previously been shown to release a potent mitogen for mesenchymal cells. Peritoneal macrophages are derived from peripheral blood monocytes, one of the principal inflammatory cells associated with numerous tissue responses to injury. Cultured human monocytes can be activated by endotoxin or concanavalin A to secrete a potent growth factor(s) that is active on human smooth muscle cells, human fibroblasts and 3T3 cells. The optimal conditions for activation of monocyte release of this monocyte-derived growth factor(s) (MDGF) were to expose 5-day-old monocyte cultures (initially plated at 6.8 × 105 cells/ml medium) to 10 μg/ml endotoxin or 6 μg/ml concanavalin A for approximately 20 hr. Monocytes can secrete MDGF into serum-free medium supplemented with 0.15% bovine serum albumin. MDGF stimulates both DNA synthesis and increase in cell number and is trypsin-sensitive, heat labile and nondialyzable. The relationship of MDGF to other monocyte products and its potential importance in wound repair and atherogenesis are discussed.  相似文献   

3.
4.
5.
6.
In cultured rabbit vascular smooth muscle cells (VSMCs), angiotensin II by itself had little mitogenic effect even in the presence of cell-free plasma-derived serum (PDS), but markedly stimulated the platelet-derived growth factor (PDGF)-induced DNA synthesis in the presence of PDS. The maximal extent of DNA synthesis induced by PDGF plus angiotensin II was about twice that induced by PDGF alone. The stimulatory effect of angiotensin II was dose-dependent with the maximal response seen at 1 microM and was inhibited by the specific angiotensin II receptor antagonist, [Sar1, Ile8]angiotensin II. In VSMCs, both PDGF and angiotensin II induced expression of the c-fos gene in dose-dependent manners. In contrast to the synergistic effect of angiotensin II and PDGF on DNA synthesis, they induced expression of the c-fos gene in an additive manner. These results suggest that angiotensin II may act as a growth regulator for VSMCs in addition to acting as a vasoconstrictor.  相似文献   

7.
The macrophage has been suggested to be responsible for the connective tissue cell proliferation that accompanies most chronic inflammatory responses. One of the secretory products of activated macrophages is MDGF, a growth factor (or factors) for fibroblasts, 3T3 cells, smooth muscle, and vascular endothelium. This report demonstrates that a significant portion of the mitogenic activity for 3T3 cells secreted by cultured human alveolar and peritoneal macrophages is due to a molecule (or molecules) similar to platelet-derived growth factor (PDGF). Two size classes (approximately 37,000-39,000 and 12,000-17,000 daltons) of mitogenically active PDGF-like molecules are detected by two criteria--antigenic similarity with PDGF and ability to compete with 125I-PDGF for high-affinity binding to the PDGF receptor. The presence of mRNA for the B chain of PDGF is demonstrated by Northern analysis, and de novo synthesis of these molecules by activated macrophages is shown by immunoprecipitation of 35S-labeled proteins with anti-PDGF IgG.  相似文献   

8.
Progressive stenosis or occlusion of bilateral internal carotid arteries by fibrocellular intimal thickening results in cerebral ischemia in moyamoya disease. The etiology is unknown. We examined cultured arterial smooth muscle cells (SMC) from scalp arteries of five patients with moyamoya disease. In this study we investigated the responsiveness of the cells in culture to serum mitogens including platelet-derived growth factor (PDGF), a major mitogen of SMC, and compared the response to that of cells derived from age-matched control patients. SMC from patients with moyamoya disease proliferated less rapidly in a medium with 15% serum than did control SMC and responded poorly to the addition of PDGF to 5% serum. PDGF alone did not stimulate SMC in a quiescent state to initiate DNA synthesis in moyamoya disease, without serum factors other than bovine serum albumin, though it significantly stimulated the controls. Simultaneous additions of epidermal growth factor, insulin-like growth factor-I, and PDGF stimulated initiation of DNA synthesis in cells from moyamoya disease, but not as much as PDGF alone did in the controls. Although direct correlations with the pathogenesis of the disease remain to be clarified, the results indicate altered interrelations between serum factors and the cellular responses in vessels of moyamoya disease.  相似文献   

9.
应用蛋白dotblot技术检测了低氧内皮细胞条件培养液(HECCM)和常氧内皮细胞条件培养液(NECCM)内PDGF相对含量,并利用[3H]-TdR掺入法和流式细胞术观察了HECCM和NECCM及加入特异PDGF抗体对肺动脉平滑肌细胞(PASMC)生长的影响。结果表明,HECCM中的PDGF含量明显高于NECCM;HECCM能明显增强PASMC内DNA合成,促进PASMC从Go/G1期进入S期;当预先加入PDGF-B链抗体时,则会明显地抑制HECCM对PASMC的DNA合成,阻止PASMC从Go/G1期进入S期。结果提示,低氧时PASMC增殖与肺动脉内皮细胞分泌释放PDGF增加有关  相似文献   

10.
In previous experiments (Grotendorst et al, 1981), we showed that platelet-derived growth factor promotes the migration of smooth muscle cells in vitro. Using a "checkerboard" analysis, we now establish that platelet-derived growth factor (PDGF) acts as a true chemoattractant for cultured aortic smooth muscle cells. Other growth factors such as epidermal growth factor, fibroblast growth factor, and insulin are not chemoattractants. The chemotactic response occurs before the initiation of DNA synthesis and is not affected by inhibition of DNA synthesis. Chemotaxis occurs at levels of PDGF lower than required for mitogenesis. RNA and protein synthesis are required for the chemotactic response. As found previously in bacteria and leucocytes, we find that methylation reactions are required for the chemotactic response. The possibility is discussed that PDGF acts in vivo at sites of vascular injury to attract smooth muscle cells from the medial layer to the luminal surface, and is involved in the early stages of the formation of atherosclerotic plaques.  相似文献   

11.
We recently showed that the farnesyltransferase inhibitor FTI-277 blocks interleukin 1beta (IL-1beta)-induced nitric oxide production in pulmonary vascular smooth muscle cells (SMC), whereas the geranylgeranyltransferase inhibitor GGTI-298 enhances this effect. Here we show that IL-1beta and platelet-derived growth factor (PDGF) stimulate superoxide production by pulmonary vascular SMC and that this effect is blocked by both FTI-277 and GGTI-298, suggesting that farnesylated and geranylgeranylated proteins are required for superoxide production. We also show that FTI-277 and GGTI-298 block superoxide production stimulated by constitutively active mutant H-Ras. Furthermore, superoxide production by IL-1beta, PDGF factor, and constitutively activated Ras is blocked by diphenyleneiodonium, implicating NAD(P)H oxidase as the generating enzyme. Given the role of oxidant radicals in vascular reactivity and injury, the action of both FTI-277 and GGTI-298 in suppressing superoxide generation by an inflammatory cytokine as well as by a potent smooth muscle mitogen may be therapeutically useful.  相似文献   

12.
In cultured rabbit vascular smooth muscle cells (VSMC), platelet-derived growth factor (PDGF), a potent mitogen for VSMC, induced the dose- and time-dependent formation of inositol mono-, bis- and trisphosphates (IP1, IP2 and IP3, respectively). The doses of PDGF necessary for these reactions were similar to those for DNA synthesis. The maximal level of IP1 was comparable to, and those of IP2 and IP3 were about half of those induced by angiotensin II, a potent vasoconstrictor. However, the time courses of the PDGF-induced reactions were slower than those of the angiotensin II-induced ones. Moreover, protein kinase C-activating phorbol esters inhibited the angiotensin II-induced reactions, but did not the PDGF-induced ones. These results indicate that PDGF induces the phospholipase C reactions in VSMC but suggest that the signaling mechanism of PDGF to the phospholipase C is different from that of angiotensin II.  相似文献   

13.
The ATP-binding cassette transporter A1 (ABCA1) regulates lipid efflux from peripheral cells to High-density lipoprotein. The platelet-derived growth factor (PDGF) is a potent mitogen that enables vascular smooth muscle cells to participate in atherosclerosis. In this report, we showed that PDGF suppressed endogenous expression of ABCA1 in cultured vascular smooth muscle cells. Exposure of CRL-208 cells to PDGF elicited a rapid phosphorylation of a kinase downstream from PI3-K, Akt. The constitutively active form of both p110, a subunit of PI3-K, and Akt inhibited activity of the ABCA1 promoter. In conclusion, PI3-K-Akt pathways participate in PDGF-suppression of ABCA1 expression.  相似文献   

14.
Platelet-derived growth factor (PDGF) AB and BB isoforms were potent mitogens for cultured vascular smooth muscle cells from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). PDGF-AA promotes protein synthesis in a dose-dependent manner in SHR cells, whereas DNA synthesis was stimulated only slightly. However, this isoform did not activate either DNA or protein synthesis in WKY cells. PDGF-AA stimulated tyrosine phosphorylation of its receptor protein and phospholipase C-gamma 1 in SHR cell but not in WKY cells. These results indicate that vascular smooth muscle cell of SHR is uniquely responsive to PDGF-AA, presumably due to abnormality in receptor expression, in its hypertrophic response.  相似文献   

15.
16.
To investigate the role of intracellular Ca2+ in the mechanism of cellular proliferation of vascular smooth muscle cells (VSMC), the effects of Ca2+-antagonists and calmodulin (CaM) inhibitors on DNA synthesis stimulated by serum-derived growth factors were studied in cultured VSMCs derived from rat aorta. DNA synthesis assessed by incorporation of [3H]thymidine into the cells was significantly stimulated by epidermal growth factor (EGF), platelet-derived growth factor (PDGF) or fetal bovine serum (FBS), of which the effects were dose-dependently inhibited by a variety of Ca2+-antagonists, such as verapamil, diltiazem and nicardipine. Trifluoperazine and W-7, both specific CaM inhibitors, similarly inhibited DNA synthesis stimulated by EGF, PDGF or FBS in a dose-dependent manner, whereas W-5, a less specific CaM inhibitor, was minimally effective. These data suggest that the Ca2+-CaM system plays an important role in the mechanism of growth factor-induced DNA synthesis in VSMCs.  相似文献   

17.
We studied the antagonistic effects of interferon (IFN) and growth factors in G0/G1-arrested normal bovine aortic smooth muscle cells (SMC) which were stimulated by serum, or purified platelet derived growth factor (PDGF), supplemented with plasma-derived serum (PDS). The growth response, measured as [3H]thymidine incorporation into DNA, was dependent on the concentration of the mitogen. Human IFN alpha, recombinant human IFN alpha 2, or a crude bovine-IFN preparation prepared from virus-infected bovine aortic endothelial cells, inhibited SMC growth induced by either serum or PDGF with PDS. The extent of IFN inhibition was inversely related to the concentration of the mitogenic stimulus. We also investigated whether IFN inhibited the early events in G1 phase, stimulated by the competence factor PDGF, or the progression of the cell into the S phase induced by PDS. The results indicated that IFN inhibited these two stages of the G1 phase independently. In addition, we investigated the antiproliferative effect of IFN on bovine aortic endothelial cells (BAEC), which do not respond to PDGF but to the mitogenic activity of fibroblast growth factor (FGF). IFN inhibited the mitogenic activity of FGF in a dose-dependent manner. The results indicate that the anti-proliferative activity of IFN and the mitogenic effects of different growth factors are independent.  相似文献   

18.
Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and transforming growth factor-β (TGF-β) are potent mitogens present in human platelets. Since they are likely to be released simultaneously at the site of vessel injury, their combined effects on vascular smooth muscle cells are more relevant physiologically than their individual actions. Therefore, we added various concentrations of growth factors to quiescent porcine aortic smooth muscle cells cultured in lowserum (0.5%) medium and measured the amount of [3H]thymidine incorporated into DNA. Effect of TGF-β alone was concentration-dependent: stimulatory (1.5-fold increase over the basal) at 0.025 ng/ml and inhibitory at 0.1 ng/ml. Effects of the other three growth factors on DNA synthesis were only stimulatory; their maximally effective concentrations were 20 ng/ml for PDGF (eightfold over the basal), 40 ng/ml for EGF (sixfold increase), and 20 ng/ml for IGF-I (fourfold increase). When PDGF, EGF, and IGF-I were added at submaximally effective concentrations, their effects were additive. TGF-β at 1 ng/ml inhibited at least 50% of the effects of 20 ng/ml EGF and of 10 ng/ml IGF-I, whereas inhibition of the effect of 10 ng/ml PDGF required 10 ng/ml of TGF-β. The concentration of TGF-β needed to inhibit 50% of the combined effect of EGF, IGF-1, and PDGF was 5 ng/ml. These results show complex interrelationships between the growth factors contained in the α-granules of human platelets in their effects on porcine aortic smooth muscle cells.  相似文献   

19.
Platelet-derived growth factor AA (PDGF AA), in contrast to PDGF AB and BB, is a poor mitogen for smooth muscle cells (SMC). However, together with basic fibroblast growth factor (bFGF) it acts synergistically on DNA synthesis of these cells. Northern blot analysis revealed that bFGF selectively increases the PDGF-receptor alpha subtype (PDGF-R alpha) mRNA level without a significant effect on the PDGF-R beta mRNA level. The amount of PDGF-R alpha protein is also selectively increased after stimulating SMC with bFGF as shown by immunoprecipitation of lysates from SMC with anti-PDGF-R alpha antibodies. The number of binding sites for 125I-PDGF AA is more than doubled after bFGF-treatment, whereas the specific binding for PDGF AB and BB increased only by approximately 30 and 20%, respectively. The increase in the number of PDGF-R alpha renders the SMC responsive for PDGF AA as demonstrated by the induction of the proto-oncogene c-fos as well as by an increased cell proliferation. The enhanced PDGF binding after bFGF treatment may in fact explain the observed synergistic behavior. These data are discussed with regard to a possible role of growth factor-induced transmodulation of receptor expression during atherogenesis.  相似文献   

20.
Serotonin-induced DNA synthesis in bovine aortic smooth muscle cells was totally abolished by pretreatment of cultures with 5 ng/ml pertussis toxin. The half maximally effective concentration of toxin was approximately 10 pg/ml. Pertussis toxin did not affect platelet-derived growth factor (PDGF)-stimulated DNA synthesis and actually enhanced the mitogenic effect of the phorbol ester, phorbol 12-myristate 13-acetate. Pertussis toxin did not inhibit serotonin-stimulated inositol phosphate accumulation or increases in intracellular calcium or cAMP concentrations under conditions sufficient to completely inhibit serotonin-induced (3H)thymidine incorporation. These results demonstrate that a novel, pertussis-sensitive pathway is required for serotonin-, but not platelet-derived growth factor-induced DNA synthesis in vascular smooth muscle cells. The pertussis-sensitive step does not involve cAMP, phosphoinositide hydrolysis, mobilization of intracellular calcium, or phorbol ester-sensitive protein kinase C activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号