首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeding larvae of marine invertebrates fuel development from both endogenous egg energy and exogenous energy obtained from the planktonic environment. Although both sources of energy likely influence certain larval stages, only the effects of exogenous food have been well studied. Despite the lack of research on the effects of egg size on larval stages, investigators have hypothesized that egg size influences the duration of the facultative feeding stage—the stage in which larvae can feed but do not have to because development is still being fueled by egg energy. To test this hypothesis, we investigated six species of sand dollars with different sized eggs and quantified the duration of the larval facultative feeding period of each species by comparing when fed and starved larvae diverged in size. Regardless of whether phylogeny was taken into account, the duration of the facultative feeding period was positively correlated with egg size. We further determined that our conclusions were not sensitive to either our estimation of the duration of the facultative feeding period, or the branch lengths of the phylogeny we used. This relationship is likely a result of larger eggs being provisioned with more energy, and may affect how well larvae can cope with natural variability in food concentrations. Furthermore, our results support an assumption of a theoretical model developed to understand the evolution of different life-history strategies in marine invertebrate larvae, which suggests that this relationship has important evolutionary consequences.  相似文献   

2.
Convergent maternal provisioning and life-history evolution in echinoderms   总被引:5,自引:0,他引:5  
In marine invertebrates, the frequent evolution of lecithotrophic nonfeeding development from a planktotrophic feeding ancestral developmental mode has involved the repeated, independent acquisition of a large, lipid-rich, usually buoyant egg. To investigate the mechanistic basis of egg-size evolution and the role of maternally provisioned lipids in lecithotrophic development, we identified and quantified the egg lipids in six sea urchin species and five sea star species encompassing four independent evolutionary transformations to lecithotrophy. The small eggs of species with planktotrophic development were dominated by triglycerides with low levels of wax esters, whereas the larger eggs of lecithotrophs contain measurable triglycerides but were dominated by wax ester lipids, a relatively minor egg component of planktotrophs. Comparative analysis by independent contrasts confirmed that after removing the influence of phylogeny, the evolution of a large egg by lecithotrophs was correlated with the conspicuous deposition of wax esters. Increases in wax ester abundance exceeded expectations based solely on changes in egg volume. Wax esters may have roles in providing buoyancy to the egg and for postmetamorphic provisioning. Experimentally reducing the amount of wax esters in blastula stage embryos of the lecithotroph Heliocidaris erythrogramma resulted in a viable but nonbuoyant larvae. During normal development for H. erythrogramma, wax ester biomass remained constant during development to metamorphosis (five days postfertilization), but decreased during juvenile development before complete mouth formation (12 days postfertilization) and was further reduced at 18 days postfertilization. The function of wax esters may be specific to the lecithotrophic developmental mode because there were negligible wax esters present in competent pluteus larvae of Strongylocentrotus drobachiensis, a planktotrophic species. These data suggest that this seminal evolutionary modification, the production of a large egg, has been accomplished in part by the elaboration of a preexisting oogenic component, wax esters. The modification of preexisting oogenic processes may facilitate the observed high frequency of transformations in larval mode in marine invertebrates.  相似文献   

3.
Evolution of marine invertebrate reproductive patterns   总被引:1,自引:0,他引:1  
A simple model of the evolution of reproductive patterns in marine benthic invertebrates is presented. The aim is to discuss the dichotomous distribution of forms into those which produce a large number of small eggs with planktotrophic development, and those which produce a small number of large eggs with direct or lecithotrophic development. The fecundity of adult individuals is assumed to be inversely proportional to egg size, and the mortality of planktonic larvae is assumed to be density independent and size dependent. The growth of planktonic larvae is assumed to be sigmoid with metamorphosis occurring at a given size. The model concludes that there are at most two evolutionarily stable egg sizes. Depending on larval growth rate and death rate, the metamorphosis size, a smaller egg size, or both may be evolutionarily stable. The predictions of the model are compared to patterns observed in nature. Illustrative data are supplied mainly from prosobranch molluscs.  相似文献   

4.
Summary Although inter- and intraspecific variation in egg size among amphibians has been well documented, the relationship between egg size and fitness remains unclear. Recent attempts to correlate egg size intraspecifically with larval developmental patterns have been equivocal. In this study the development of larvae derived from large eggs and small eggs, from a single population in Maryland were compared under a range of food levels and larval population densities. Both food level and density had significant effects on the length of the larval period and size at metamorphosis. However, the response among larvae derived from different egg sizes was not additive. At low densities and high food levels, larvae from small eggs had longer larval periods and a larger size at metamorphosis than larvae derived from large eggs. In contrast, at high densities larvae from small eggs had longer developmental periods but were smaller at metamorphosis than larvae from large eggs. In addition, larvae from small eggs were more sensitive to density irrespective of food level. These results suggest that optimal egg size is correlated with environmental factors, which may explain the maintenance of both geographic and within population variation in egg size commonly observed in amphibians.  相似文献   

5.
Many life-history and developmental studies of marine invertebrates assume that eggs of species with nonfeeding larvae are large because they provide materials for rapid development. Using the sea urchin Heliocidaris erythrogramma which has 400 μm eggs and nonfeeding larvae, we removed an acellular, lipid-rich component from the blastula equivalent to ca. 40% of the egg volume and ca. 50% of the organic mass. Experimentally manipulated, reduced-lipid larvae survived well, developed in the usual time (3.5 d), and high percentages of the original numbers metamorphosed into anatomically normal juveniles. Control juveniles were larger at metamorphosis, grew more, and survived longer than siblings that lacked this lipid-rich material. Moderate increases in egg size in species with nonfeeding larvae may enhance postlarval performance significantly and therefore may reflect selection on early juvenile traits. The contrasts of our results and comparable experiments with feeding larvae suggests that egg size may play fundamentally different roles in species with feeding and nonfeeding larvae. The accommodation of materials reserved for the juvenile stage should be considered among hypotheses on evolutionary modification of developmental patterns.  相似文献   

6.
Abstract. The morphology of marine invertebrate larvae is strongly correlated with egg size and larval feeding mode. Planktotrophic larvae typically have suites of morphological traits that support a planktonic, feeding life style, while lecithotrophic larvae often have larger, yolkier bodies, and in some cases, a reduced expression of larval traits. Poecilogonous species provide interesting cases for the analysis of early morphogenesis, as two morphs of larvae are produced by a single species. We compared morphogenesis in planktotrophic and lecithotrophic morphs of the poecilogonous annelid Streblospio benedicti from the trochophore stage through metamorphosis, using observations of individuals that were observed alive, with scanning electron microscopy, or in serial sections. Offspring of alternate developmental morphs of this species are well known to have divergent morphologies in terms of size, yolk content, and the presence of larval bristles. We found that some phenotypic differences between morphs occur as traits that are present in only one morph (e.g., larval bristles, bacillary cells on the prostomium and pygidium), but that much of the phenotypic divergence is based on heterochronic changes in the differentiation of shared traits (e.g., gut and coelom). Tissue and organ development are compared in both morphs in terms of their structure and ontogenetic change throughout early development and metamorphosis.  相似文献   

7.
Summary

Although a tendency for high latitude marine invertebrates to avoid pelagic larval stages was first described in the 19th century, the most detailed early study was that of Thorson in Greenland. This work also established other features of the reproduction of polar marine invertebrates that have become regarded as almost axiomatic (e.g., the release of larvae to coincide with the summer bloom) or largely ignored (a latitudinal cline in egg size within species). This short and selective review examines Thorson's conclusions in the light of recent work. It is now clear that although polar prosobranch gastropods reproduce almost entirely by direct development, for many taxa the real distinction between polar and non-polar species is in the proportion of feeding to non-feeding larvae. Some species release feeding larvae in winter and the energy source for these larvae is obscure. Growth is slow and there is little or no evidence for temperature compensation. Many crustacean species have larger eggs at higher latitudes. Egg size varies significantly within species, with larger eggs being associated with larger females and often reduced fecundity. The reasons for these within-species patterns are currently unresolved.  相似文献   

8.
Credible cases of poecilogony, the production of two distinct larval morphs within a species, are extremely rare in marine invertebrates, yet peculiarly common in a clade of herbivorous sea slugs, the Sacoglossa. Only five animal species have been reported to express dimorphic egg sizes that result in planktotrophic and lecithotrophic larvae: the spionid polychaete Streblospio benedicti and four sacoglossans distributed in temperate estuaries or the Caribbean. Here, we present developmental and genetic evidence for a fifth case of poecilogony via egg-size dimorphism in the Sacoglossa and the first example from the tropical Indo-Pacific. The sea slug Elysia pusilla produced both planktotrophic and lecithotrophic larvae in Guam and Japan. Levels of genetic divergence within populations were markedly low and rule out cryptic species. However, divergence among populations was exceptionally high (10-12% at the mitochondrial cytochrome c oxidase I locus), illustrating that extensive phylogeographic structure can persist in spite of the dispersal potential of planktotrophic larvae. We review reproductive, developmental, and ecological data for the five known cases of poecilogony in the Sacoglossa, including new data for Costasiella ocellifera from the Caribbean. We hypothesize that sacoglossans achieve lecithotrophy at smaller egg sizes than do related clades of marine heterobranchs, which may facilitate developmental plasticity that is otherwise vanishingly rare among animals. Insight into the environmental drivers and evolutionary results of shifts in larval type will continue to be gleaned from population-level studies of poecilogonous taxa like E. pusilla, and should inform life-history theory about the causes and consequences of alternative development modes in marine animals.  相似文献   

9.
10.
We tested whether daily mortality rates (DMR) of smallmouth bass offspring were influenced by life interval, offspring density and growth, parental male attributes, and selected mortality factors during parental care in a regulated Virginia stream. Mortality averaged 9.5% per day (range 5.2–13.9%) and 94.1% total (range 80.9–99.5%) from egg deposition to the juvenile period (29–36 d) for individual broods. Offspring losses were primarily attributed to fungus (Saprolegnia parasitica) infection of eggs and to American eel, Anguilla rostrata, predation. DMR were significantly higher for the interval from swim-up of larvae to metamorphosis relative to earlier and later intervals. There was no significant autocorrelation of DMR among life intervals for individual broods, indicating that relative mortality rates were inconsistent among broods through time. DMR were also uncorrelated with the number of offspring per brood, offspring growth rates, and parental male attributes, except during egg and embryo intervals. Daily egg mortality was negatively related to male size and positively related to the number of eggs per nest, suggesting that density-dependent egg mortality may have been partially offset in nests of larger males. Larger males received more eggs, tended to maintain larger broods throughout parental care, and contributed a high proportion of the total number of juveniles reared. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Experimental manipulations of the energy content of marine invertebrate embryos have been useful in testing key assumptions of life history theory, especially those concerning relationships between egg size, length of the planktonic period, and juvenile size and quality. However, methods for such “allometric engineering” experiments have been available for only a limited set of taxa (those with regulative early development, e.g., cnidarians and echinoderms). Here, we describe a method for the reduction of embryo energy content in the spirally cleaving embryos of a marine annelid, Capitella teleta, by targeted deletion of endodermal precursor cells. Embryos of C. teleta in which up to three cells (the macromeres 3A, 3B, and 3C) were deleted formed morphologically normal lecithotrophic larvae that were much smaller than larvae developing from control embryos. Experimental larvae metamorphosed at high rates, forming juveniles that were smaller than control juveniles. Juveniles derived from treated embryos had functional midguts, ingested and digested food, and grew into sexually mature adults. These results are consistent with those from previous allometric engineering studies of echinoid echinoderms, which suggest that in facultatively planktotrophic or lecithotrophic species, little maternally derived energy is used for construction of the larval body; instead, the majority is allocated to the formation of a large, high‐quality juvenile. Cleavage programs are highly conserved among divergent spiralian taxa (e.g., molluscs, nemerteans, and platyhelminths), so this method will likely be applicable to a diverse set of embryos. Similar experiments carried out in these diverse taxa will be extremely useful for evaluating inferences on relationships between egg size, length of the planktonic period, and juvenile size and quality previously based only on experiments on echinoid echinoderms.  相似文献   

12.
Abstract.  1. In libellulids, egg size differs between species and populations. There are also size differences within egg clutches of individual females.
2. Past experiments suggest that there are two different types of egg clutches in libellulids. Egg size decreases significantly during oviposition in species that perform non-contact guarding during oviposition. In contrast, in species ovipositing in tandem, egg size is randomly distributed.
3. This study deals with the possible consequences of egg size variation within the different egg clutch types. The study examined whether there is a correlation between egg development time, offspring sex or larval size and egg size.
4. The current experiments were conducted in Namibia and Germany. Five non-contact guarding and four tandem guarding libellulid species were used.
5. In some species larger eggs needed more time to develop, in some species no correlation between egg size and egg development time could be found, whereas in other species larger eggs developed faster.
6. The sex ratio was biased towards females in Leucorrhinia dubia and in Sympetrum striolatum and egg size was not associated with gender.
7. In both egg clutch types larger eggs resulted in larger larvae. In this study, evidence was found that the effects of egg size diminished with progressing larval development under good conditions. However, it is possible that the effects may have a greater influence under harsh circumstances.  相似文献   

13.
 Evolutionary change in developmental mode in sea urchins is closely tied to an increase in maternal provisioning. We examined the oogenic modifications involved in production of a large egg by comparison of oogenesis in congeneric sea urchins with markedly different sized oocytes and divergent modes of development. Heliocidaris tuberculata has small eggs (95 μm diameter) and the ancestral mode of development through feeding larvae, whereas H. erythrogramma has large eggs (430 μm diameter) and highly modified non-feeding lecithotrophic larvae. Production of a large egg in H. erythrogramma involved both conserved and divergent mechanisms. The pattern and level of vitellogenin gene expression is similar in the two species. Vitellogenin processing is also similar with the gonads of both species incorporating yolk protein from coelomic and hemal stores into nutritive cells with subsequent transfer of this protein into yolk granules in the developing vitellogenic oocyte. Immunocytology of the eggs of both Heliocidaris species indicates they incorporate similar levels of yolk protein. However, H. erythrogramma has evolved a highly divergent second phase of oogenesis characterised by massive deposition of non-vitellogenic material including additional maternal protein and lipid. Maternal provisioning in H. erythrogramma exhibits recapitulation of the ancestral vitellogenic program followed by a novel oogenic phase with hypertrophy of the lipogenic program being a major contributor to the increase in egg size. Received: 12 August 1998 / Accepted: 25 November 1998  相似文献   

14.
Carotenoids are an essential and often limiting resource in animals and play important roles in immune system function. In birds, the period shortly after hatching is an energetically demanding stage characterized by rapid growth in body size and organ systems, including the immune system. Availability of carotenoids for the growing nestlings may be of particular importance and potentially limiting at this stage of development. We tested the hypothesis that the availability of carotenoids for the embryo in the egg and in the diet of nestlings limits the condition and immune responses of nestling house wrens (Troglodytes aedon Vieillot 1809), a species with melanin-based plumage pigments. In one experiment, nestlings within females' second broods were randomly assigned to receive either a control or a lutein supplement (2008); in a second experiment, females, before their first broods, were either induced to lay additional eggs or not induced, and nestlings within both kinds of broods were supplemented as in the first experiment (2009). There were no significant effects of lutein supplementation on nestling condition or phytohemagglutinin response. There was a significant effect of lutein supplementation on nestling mass in 2008, but the difference was opposite to that predicted. Moreover, even when breeding females were stressed by inducing them to lay supernumerary eggs, lutein supplementation of nestlings had no effect on the size or condition of nestlings hatching from these eggs. These results suggest that maternally derived lutein in the egg and that provided in the diet of nestlings are not limiting to normal development and to the components of the immune system involved in the phytohemagglutinin response of nestling house wrens.  相似文献   

15.
Pachut, J.F. & Fisherkeller, P. 2010: Inferring larval type in fossil bryozoans. Lethaia, Vol. 43, pp. 396–410. Larval type in extinct organisms might be recognizable because larvae of living marine invertebrates are approximately of the same size as the initial post‐larval organism. Two larval types typically occur. Planktotrophic larvae feed on other members of the plankton, potentially prolonging their larval existence and producing broad geographic distributions. Conversely, lecithotrophic larvae feed on yolk supplied by the fertilized egg, often settle quickly after release, and display more restricted distributions. However, some lecithotrophic bryozoans undergo embryonic fission forming multiple, small, polyembryonic larvae. The relationship between post‐larval size and larval type was evaluated in bryozoans by comparing the size of the ancestrula, the founding individual of a colony, to the sizes of extant planktotrophic, lecithotrophic and polyembryonic lecithotrophic larvae and ancestrulae. The sizes of larvae and ancestrulae in extant lecithotrophic and planktotrophic cheilostome (gymnolaemate) species are statistically the same. They are, however, statistically larger than the polyembryonic larvae of extant cyclostomes (stenolaemates). In turn, the sizes of cyclostome larvae are indistinguishable from the ancestrulae of extant and fossil cyclostomes, the ancestrulae of other fossil stenolaemate species measured from the literature, and the ancestrulae of three of four genera from North American Cincinnatian strata. Ancestrulae of a fourth genus, Dekayia, are the same size as cyclostome ancestrulae but are statistically smaller than the ancestrulae of other stenolaemates. With few exceptions, stenolaemates have statistically smaller larvae and ancestrulae than both lecithotrophic and planktotrophic cheilostomes. We infer that the sizes of fossil ancestrulae permit the discrimination of taxa that had polyembryonic lecithotrophic larvae from those possessing other larval types. This inference is strengthened, in several cases, by the co‐occurrence of brood chambers (gynozooecia) and restricted palaeobiogeographic distributions. The presence of cyclostomes in Early Ordovician strata suggests that polyembryony may have been acquired during the initial radiation of Class Stenolaemata. Polyembryony appears to be a monophyletic trait, but confirmation requires the demonstration that species of several stenolaemate suborders lacking skeletally expressed brood chambers possessed polyembryonic larvae. □Ancestrulae, evolution, fossil bryozoans, gynozooecia, larvae.  相似文献   

16.
The variability in size of pelagic and demersal marine and freshwater fish eggs is examined. The difference between the smallest and largest volumes, based on published figures for the diameters, is large in many species. In marine species with planktonic eggs, the median percentage difference is just over 100%, and this is similar in species with demersal eggs and in freshwater fish.
The available evidence suggests that geographical differences in egg size are small, but in marine fish there is a well-known seasonal decline in egg size. In herring it has previously been shown that egg size in different spawning groups can be correlated with the timing of the production cycle. A similar correlation can be seen in the seasonal shift in time and locality of spawning, and egg size, of the plaice. Sufficient data on seasonal freshwater fish egg variations are not available, but the time of spawning does appear to be linked with the availability of food for the larvae in both lake and stream species.  相似文献   

17.
Larvae of two species of sea urchins (Strongylocentrotus droebachiensis and S. purpuratus) differ in initial form and in the rate of development. To determine whether these differences are attributable to the large interspecific difference in egg size, we experimentally reduced egg size by isolating blastomeres from embryos. The rate of development of feeding larvae derived from isolated blastomeres was quantified using a novel morphometric method. If the differences early in the life histories of these two species are due strictly to differences in egg size, then experimental reduction of the size of S. droebachiensis eggs should yield an initial larval form and rate of development similar to that of S. purpuratus. Our experimental manipulations of egg size produced three clear results: 1) smaller eggs yielded larvae that were smaller and had simpler body forms, 2) smaller eggs resulted in slower development through the early feeding larval stages, and 3) effects of egg size were restricted to early larval stages. Larvae from experimentally reduced eggs of the larger species had rates of development similar to those of the smaller species. Thus, cytoplasmic volumes of the eggs, not genetic differences expressed during development, account for differences in larval form and the rate of form change. This is the first definitive demonstration of the causal relationship between egg size (parental investment per offspring) and life-history characteristics in marine benthic invertebrates. Because larval form influences feeding capability, the epigenetic effects of egg size on larval form are likely to have important functional consequences. Adaptive evolution of egg size may be constrained by the developmental relationships between egg size and larval form: evolutionary changes in egg size alone can result in concerted changes in larval form and function; likewise evolutionary changes in larval form and function can be achieved through changes in egg size. These findings may have broader implications for other taxa in which larval morphology and, consequently, performance may be influenced by changes in egg size.  相似文献   

18.
Planktotrophic larvae grow by utilizing energy obtained from food gathered in the plankton. Morphological plasticity of feeding structures has been demonstrated in multiple phyla, in which food-limited larvae increase feeding structure size to increase feeding rates. However, before larvae can feed exogenously they depend largely on material contained within the egg to build larval structures and to fuel larval metabolism. Thus, the capacity for plasticity of feeding structures early in development may depend on egg size. Using the congeneric sea urchins Strongylocentrotus franciscanus and S. purpuratus, which differ in egg volume by 5-fold, I tested whether the degree of expression of feeding structure (larval arm length) plasticity is correlated with differences in the size of the egg. I experimentally manipulated egg size of S. franciscanus (the larger-egged species) by separating blastomeres at the 2-cell stage to produce half-sized larvae. I reared half-size and normal-size larvae under high and low food treatments for 20 days. I measured arm and body lengths at multiple ages during development and calculated the degree of plasticity expressed by larvae from all treatments. Control and unmanipulated S. franciscanus larvae (from ∼ 1.0 nl eggs) had significantly longer arms relative to body size and a significantly greater degree of plasticity than half-sized S. franciscanus larvae (from < 0.18 nl eggs), which in turn expressed a significantly greater degree of plasticity than S. purpuratus larvae (from ∼ 0.3 nl eggs). These results indicate that egg size affects larval arm length plasticity in the genus Strongylocentrotus; larger eggs produce more-plastic larvae both in an experimental and a comparative context. However, changes in egg size alone are not sufficient to account for evolved differences in the pattern of plasticity expressed by each species over time and may not be sufficient for the evolutionary transition from feeding to non-feeding.  相似文献   

19.
In marine invertebrates, polymorphism and polyphenism in mode of development are known as “poecilogony.” Understanding the environmental correlates of poecilogony and the developmental mechanisms that produce it could contribute to a better understanding of evolutionary transitions in mode of development. However, poecilogony is rare in marine invertebrates, with only ten recognized, well‐documented cases. Five examples occur in sacoglossan gastropods, and five occur in spionid polychaetes. Here, we document the eleventh case, and the first in a caenogastropod mollusc. Females of Calyptraea lichen collected in the field or reared in the laboratory often produce broods of planktotrophic larvae. They can also be collected with mixed broods, in which each capsule contains planktotrophic larvae, nurse embryos, and adelphophagic embryos. Adelphophages eat the nurse embryos and hatch as short‐lived lecithotrophic larvae, or even as juveniles. Mitochondrial COI and 16S DNA sequences for females with different types of broods differ by less than 0.5%, supporting conspecific status. Some females collected in the field with mixed broods subsequently produced planktotrophic broods, demonstrating that females can produce two different kinds of broods. Calyptraea lichen is therefore polyphenic in two ways: mode of development can vary among embryos within a capsule, and females can change the types of broods they produce.  相似文献   

20.
Females of many insect species cluster their eggs. Egg clustering by lepidopteran species usually results in aggregation of larvae that are more often conspicuously coloured and apparently distasteful or unpalatable than larvae of solitary species. While the costs and benefits of aggregation in terms of larval survival and growth are well documented, the evolutionary ecology of egg clustering has been long debated and is still unresolved. We tested the egg desiccation hypothesis, first proposed by Stamp (1980), which to our knowledge has never been examined experimentally. The egg desiccation hypothesis proposes that egg clustering is adaptive per se (i.e. increases fitness of females) by reducing egg mortality via desiccation.We tested this hypothesis for the Nymphalid butterfly, Chlosyne lacinia, an egg-clustering species on its sunflower host plant, Helianthus annuus. We first documented natural variation in batch size for this butterfly. We then tested experimentally hatch success of varying batch sizes and egg-layering arrangements under controlled humidity levels. Hatch success was positively related to relative humidity. Eggs in larger groups with greater number of layers had greater hatch success than smaller, monolayered egg batches, especially when relative humidity was low. Our results indicate that, not only number of eggs, but also the arrangement (i.e. layering and density), increase batch survival by protecting eggs from desiccation. However, despite increased hatch success in dense, multilayered clusters, we found wide variation in layering and density in natural populations of C. lacinia. This variation is probably maintained by trade-offs in egg survival, such as increased cannibalism of eggs by siblings, in dense clusters. Nevertheless, protection from egg desiccation provides an alternative explanation for the origin and maintenance of egg clustering in lepidopterans and possibly other insects. The pattern of egg deposition in the Nymphalidae supports this hypothesis, since most North American species cluster their eggs tightly, whereas most species in tropical regions lay eggs singly or in loose monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号