首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The endemic plated lizards (Gerrhosauridae) of Madagascar are one of the most diverse groups of lizards on the island (19 species) and are found in all ecoregions. On an island that presents so many interesting biological questions, plated lizards are an ideal group for examining patterns of diversification due to their high (but tractable) diversity and wide distribution. To resolve the taxonomy and evolutionary relationships of Malagasy plated lizards, and to explore their biogeographic history, we have generated a molecular phylogeny based on >2kb of both mitochondrial (cob, 1142 bp) and nuclear (NT-3, 419 bp; c-mos, 542 bp) DNA sequences. Phylogenetic relationships and divergence-time estimates indicate Zonosaurinae are monophyletic, arising from a single colonization event, likely from Africa to Madagascar in the Paleogene (Paleocene/early Eocene), with subsequent radiation. Furthermore, our results reveal widespread mischaracterization of species delimitation and assignment based on phenotypic characteristics. Paraphyly of a number of zonosaurine species was strongly supported by our dataset, revealing not only instances of likely cryptic species (phenotypic conservatism) but also phenotypic/genotypic discordance in the delimitation of species (phenotypic variability). These results clearly demonstrate the complex history of biotic diversification on Madagascar and provide novel insight into biogeographic patterns on the island.  相似文献   

2.
When biologists are asked to discuss the evidence for evolution at public forums, they usually use well-established microevolutionary examples. Although these examples show the efficacy of evolution within species, they often leave audiences susceptable to the arguments of creationists who deny that evolution can create new structures and species. Recent studies from evolutionary developmental biology are beginning to provide case studies that specifically address these concerns. This perspective presents some of this new evidence and provides a framework in which to explain homology and phylogeny to such audiences.  相似文献   

3.
4.
Dagher MC  Pick E 《Biochimie》2007,89(9):1123-1132
The NADPH-oxidase complex of phagocytic cells plays a key role in the defense against invading pathogens, through the release of superoxide anion, precursor of other reactive oxygen species (ROS). NADPH-oxidase deficiency is called Chronic Granulomatous Disease (CGD), in which patients suffer from recurrent infections and from the formation of granulomas in various organs. Research on NADPH-oxidase has much benefited from the discovery of cell-free systems, i.e. reconstitution assays from broken resting (unstimulated) phagocytes, in which activation of the oxidase is elicited in vitro. Cell-free systems were developed in parallel to studies of molecular defects of patients with CGD, both approaches leading to the identification of the major proteins implicated in enzyme activation. Variations around the cell-free system allowed molecular dissection of the mechanism of NADPH-oxidase activation and provided insights into its relationship to phagocytosis.  相似文献   

5.
6.
The evolutionary history of the lizard family Gymnophthalmidae is characterized by several independent events of morphological modifications to a snake-like body plan, such as limb reduction, body elongation, loss of external ear openings, and modifications in skull bones, as adaptive responses to a burrowing and fossorial lifestyle. The origins of such morphological modifications from an ancestral lizard-like condition can be traced back to evolutionary changes in the developmental processes that coordinate the building of the organism. Thus, the characterization of the embryonic development of gymnophthalmid lizards is an essential step because it lays the foundation for future studies aiming to understand the exact nature of these changes and the developmental mechanisms that could have been responsible for the evolution of a serpentiform (snake-like) from a lacertiform (lizard-like) body form. Here we describe the post-ovipositional embryonic development of the fossorial species Nothobachia ablephara and Calyptommatus sinebrachiatus, presenting a detailed staging system for each one, with special focus on the development of the reduced limbs, and comparing their development to that of other lizard species. The data provided by the staging series are essential for future experimental studies addressing the genetic basis of the evolutionary and developmental variation of the Gymnophthalmidae.  相似文献   

7.
Health services research has become more prominent as a result of the NHS reforms. Both providers and purchasers want to know exactly where the money is spent and how it could be used more effectively. How best to obtain information about health services is the subject of some debate within and between disciplines engaged in such research. Because of their training doctors are often sceptical of anything other than formal clinical trials and research which produces statistical data. Some sociologists argue that another way to find out what is actually happening in the NHS is to observe people at work and talk to them. This article debates these differing views of research methods. For effective research both quantitative and qualitative approaches need to be used.  相似文献   

8.
9.
Character analysis in morphological phylogenetics: problems and solutions   总被引:1,自引:0,他引:1  
Many aspects of morphological phylogenetics are controversial in the theoretical systematics literature and yet are often poorly explained and justified in empirical studies. In this paper, I argue that most morphological characters describe variation that is fundamentally quantitative, regardless of whether they are coded qualitatively or quantitatively by systematists. Given this view, three fundamental problems in morphological character analysis (definition, delimitation, and ordering of character states) may have a common solution: coding morphological characters as continuous quantitative traits. A new parsimony method (step-matrix gap-weighting, a modification of Thiele's approach) is proposed that allows quantitative traits to be analyzed as continuous variables. The problem of scaling or weighting quantitative characters relative to qualitative characters (and to each other) is reviewed, and three possible solutions are described. The new coding method is applied to data from hoplocercid lizards, and the results show the sensitivity of phylogenetic conclusions to different scaling methods. Although some authors reject the use of continuous, overlapping, quantitative characters in phylogenetic analysis, quantitative data from hoplocercid lizards that are coded using the new approach contain significant phylogenetic structure and exhibit levels of homoplasy similar to those seen in data that are coded qualitatively.  相似文献   

10.
The genus Alcantarea comprises near 30 species endemic to rocky outcrops from eastern Brazil. Most species are ornamental and several are threatened due to habitat loss and over collection. In this paper we examine the phylogenetics of Alcantarea and its relationship with the Brazilian members of Vriesea, a genus of which Alcantarea has been treated as a subgenus. We discuss the morphological evolution of the stamen position and its implication for pollination and the occurrence of Alcantarea in the Espinha?o mountain range rocky savanna-like habitat vegetation. DNA sequence data derived from two plastid markers (trnK-rps16, trnC-petN) and from a low copy nuclear gene (Floricaula/Leafy) together with 20 nuclear microsatellite loci were the data source to perform analyses and construct phylogenetic and Neighbor Joining trees for the genus. Alcantarea is well supported as monophyletic in both Bayesian and parsimony analyses, but sections of Vriesea, represented by the eastern Brazilian species, appear paraphyletic. Microsatellites delimit geographically isolated species groups. Nevertheless individuals belonging to a single species may appear related to distinct clusters of species, suggesting that hybridization and/or homoplasy and/or incomplete lineage sorting are also influencing the analysis based on such markers and may be the reasons for some unexpected results. Alcantarea brasiliana is hypothesized as putative hybrid between A. imperialis and A. geniculata. Spreading stamens, a morphological floral characteristic assumed to be related to Chiropterophily, apparently evolved multiple times within the genus, and invasion of rocky savanna-like habitat vegetation by Atlantic rainforest ancestors seems to have occurred multiple times as well.  相似文献   

11.
Karyotypes were determined on 27 lemurs from six species of what has been called the “subfamily” of Cheirogaleinae : Microcebus murinus murinus (2), M. murinus rufus (2), M. coquereli (5), Phaner furcifer (6), Cheirogaleus medius (9), and C. major (3). The cytogenetic study of these animals reveals that this “subfamily” contains in fact two groups, (a) — Microcebus and Cheirogaleus, and (b) — Phaner. The karyotype of the first two genera has a fundamental number (FN) equal to 66 and the karyotype of the third genus has an FN equal to 62. This result and the fact that Phaner has a particular scent-marking gland, knuckle pads, and finger prints markedly different from those of other genera agree with the view that this animal belongs to a special subfamily, Phanerinae, while the two other genera constitute the subfamily of Cheirogaleinae. These two subfamilies constitute the family of Cheirogaleidae.  相似文献   

12.
Summary Head size and shape of reptiles may reflect selection for multiple uses. For example, sexual selection for large head size may enhance feeding efficiency. In contrast, morphological characteristics of the heads of fossorial reptiles suggests that fossoriality may have evolved at the expense of reduced effectiveness in feeding. Our research focused on the question: Does a fossorial lizard feed less effectively than a non-fossorial lizard? To answer this question, we measured the time, number of bites, and oxygen consumption by sand-swimming (Chalcides ocellatus) and epigeal (Eumeces inexpectatus) skinks feeding on crickets. These lizard species were similar in mass, but different in body form: Chalcides had longer bodies and smaller heads than Eumeces. For lizards of the same mass, Chalcides were unable to eat prey as large as those eaten by Eumeces, Chalcides took longer to eat prey of the same size than did Eumeces, and the aerobic energy cost of eating crickets of the same relative size (cricket mass/lizard mass) tended to be greater for Chalcides than for Eumeces. The ecologically relevant costs of feeding appear to be the upper limit to the size of prey and the time of feeding. Both costs would restrict the energy intake per unit time of Chalcides. Moreover, given the same energy requirements and prey community, Chalcides would have to feed more often and would take longer to feed than would Eumeces. Both factors would increase the exposure of Chalcides to predators relative to that of Eumeces. To reduce the risk of predation, Chalcides would have to reduce energy intake or fulfill its energy requirements with relatively small prey, or both. These conclusions are potentially confounded in two ways. The first is that male Eumeces have relatively large heads as a result of sexual selection. Thus, the differences we observed between Chalcides and Eumeces (most of our specimens were males) could have been the result of reduced costs of feeding for Eumeces due to sexual selection and not the result of enhanced costs of feeding for Chalcides. A more likely explanation is that differences in the costs of feeding observed between these species reflect adaptations for fossoriality by Chalcides and sexual selection on Eumeces. Our results may also be confounded because we compared laboratory reared Chalcides with field captured Eumeces. Any deterimental effects of captivity on the vigor of Chalcides would increase their costs of feeding relative to those of Eumeces. Although short-term captivity is not associated with changes in the metabolic capcity of lizards, effects of long-term captivitiy are unknown.  相似文献   

13.
Sympatric species that initially overlap in resource use are expected to partition the environment in ways that will minimize interspecific competition. This shift in resource use can in turn prompt evolutionary changes in morphology. A classic example of habitat partitioning and morphological differentiation are the Caribbean Anolis lizards. Less well studied, but nevertheless striking analogues to the Anolis are the Southeast Asian Draco lizards. Draco and Anolis have evolved independently of each other for at least 80 million years. Their comparison subsequently offers a special opportunity to examine mechanisms of phenotypic differentiation between two ecologically diverse, but phylogenetically distinct groups. We tested whether Draco shared ecological axes of differentiation with Anolis (e.g., habitat use), whether this differentiation reflected interspecific competition, and to what extent adaptive change in morphology has occurred along these ecological axes. Using existing data on Anolis, we compared the habitat use and morphology of Draco in a field study of allopatric and sympatric species on the Malay Peninsula, Borneo and in the Philippines. Sympatric Draco lizards partitioned the environment along common resource axes to the Anolis lizards, especially in perch use. Furthermore, the morphology of Draco was correlated with perch use in the same way as it was in Anolis: species that used wider perches exhibited longer limb lengths. These results provide an important illustration of how interspecific competition can occur along common ecological axes in different animal groups, and how natural selection along these axes can generate the same type of adaptive change in morphology.  相似文献   

14.
Molecular phylogenetics and evolution of turtles   总被引:4,自引:0,他引:4  
Turtles are one of Earth's most instantly recognizable life forms, distinguished for over 200 million years in the fossil record. Even so, key nodes in the phylogeny of turtles remain uncertain. To address this issue, we sequenced >90% of the nuclear recombination activase gene 1 (RAG-1) for 24 species representing all modern turtle families. RAG-1 exhibited negligible saturation and base composition bias, and extensive base composition homogeneity. Most of the relationships suggested by prior phylogenetic analyses were also supported by RAG-1 and, for at least two critical nodes, with a much higher level of support. RAG-1 also indicates that the enigmatic Platysternidae and Chelydridae, often considered sister taxa based on morphological evidence, are not closely related, although their precise phylogenetic placement in the turtle tree is still unresolved. Although RAG-1 is phylogenetically informative, our research revealed fundamental conflicts among analytical methods for estimating phylogenetic hypotheses. Maximum parsimony analyses of RAG-1 alone and in combination with two mitochondrial genes suggest the earliest phylogenetic splits separating into three basal branches, the pig-nosed turtles (Carettochelyidae), the softshell turtles (Trionychidae), and a clade comprising all remaining extant turtles. Maximum likelihood and Bayesian analyses group Carettochelyidae and Trionychidae (=Trionychoidae) in their more traditional location as the sister taxon to all other hidden-necked turtles, collectively forming the Cryptodira. Our research highlights the utility of molecular data in identifying issues of character homology in morphological datasets, while shedding valuable light on the biodiversity of a globally imperiled taxon.  相似文献   

15.
Despite recent molecular systematic studies on the fossorial southern African skink subfamily Acontinae, evolutionary relationships among the three genera remain unresolved and disputed. Among these, the most recent study suggests that both Typhlosaurus and Acontias are paraphyletic, contrasting earlier results that suggest the presence of two divergent clades within Acontias. Here we further investigate the evolutionary relationships in the limbless fossorial southern African subfamily Acontinae with partial sequenced data derived from four mitochondrial loci (16S rRNA, 12S rRNA, cytochrome oxidase I and cytochrome b), as well as two nuclear protein coding loci (c‐mos and RAG‐1), in an attempt to clarify evolutionary relationships. Phylogenetic results derived from combined data analyses (comprising all six loci and totalling ~3.1 kb) using maximum parsimony, maximum likelihood and Bayesian inferences converged on the same topology. The resulting phylogeny showed Typhlosaurus as monophyletic, while the monotypic genus Acontophiops was nested intermediate to two reciprocally monophyletic Acontias clades. These two Acontias clades can be distinguished on the basis of a number of morphological, morphometric and biogeographical characters, underscoring the presence of two distinct groups. In the present study, we propose the following taxonomic changes based on the multilocus phylogeny. We retain the genus name Acontias for the medium‐ and large‐bodied skinks in clade 2 comprising all taxa in the Acontias meleagris complex as well as Acontias plumbeus, Acontias gracilicauda gracilicauda, Acontias breviceps, Acontias percivali percivali and Acontias percivali occidentalis. We designate a new genus Microacontias gen. nov. for the reciprocally monophyletic taxa in clade 1 comprised of all the small‐bodied taxa that include Microacontias litoralis, Microacontias lineatus lineatus, Microacontias lineatus grayi and Microacontias lineatus tristis. We examine the evolution of characters used in the taxonomy of the Acontinae and suggest that symplesiomorphic morphological characters among fossorial taxa have been an impediment to understanding the evolution of this subfamily. This study underscores the importance of the application of multiple molecular markers (both nuclear and mitochondrial) in determining the taxonomic diversity among fossorial skinks and emphasizes the application of phylogenetics in defining synapomorphic (shared derived) features.  相似文献   

16.
Microhylid frogs are a group of largely unresolved phylogeny, and diverse data sets are needed to improve the evolutionary understanding of these amphibians. We here report karyological data for 22 species of this family, belonging to the Malagasy genera Anodonthyla, Cophyla, Platypelis, Plethodontohyla, Rhombophryne, and Stumpffia (Cophylinae); Scaphiophryne and Paradoxophyla (Scaphiophryninae); and Dyscophus (Dyscophinae); and the Asian genera Calluella and Ramanella (Microhylinae). All species studied have 2n=26 chromosomes, most of which are metacentric or submetacentric. Chromosome morphology, banding pattern, and position of the nucleolar organizer regions (NORs) provide relevant characters for the understanding of the phylogeny and systematics of these frogs. The species of the Cophylinae are characterized by a subtelocentric or telocentric fourth chromosome pair (submetacentric only in Anodonthyla), which can be seen as a synapomorphy for this subfamily. Shifts in NOR position within the Cophylinae are frequent and agree with recent mitochondrial DNA data, corroborating the non-monophyly of the genus Plethodontohyla. Changes of NOR position and chromosome morphology (i.e., occurrence of subtelocentric and telocentric elements) were also common in this subfamily, possibly being related to their faster mitochondrial substitution rate and high species diversity. The ninth chromosome pair of the examined specimens of Dyscophus guineti, all juveniles, is heteromorphic. In this pair, one of the two chromosomes is longer due to the addition of two heterochromatic segments, raising the possibility that one chromosome of this pair may be a sex chromosome.  相似文献   

17.
Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics).  相似文献   

18.
The phylogenetic relationships among baleen whales (Order: Cetacea) remain uncertain despite extensive research in cetacean molecular phylogenetics and a potential morphological sample size of over 2 million animals harvested. Questions remain regarding the number of species and the monophyly of genera, as well as higher order relationships. Here, we approach mysticete phylogeny with complete mitochondrial genome sequence analysis. We determined complete mtDNA sequences of 10 extant Mysticeti species, inferred their phylogenetic relationships, and estimated node divergence times. The mtDNA sequence analysis concurs with previous molecular studies in the ordering of the principal branches, with Balaenidae (right whales) as sister to all other mysticetes base, followed by Neobalaenidae (pygmy right whale), Eschrichtiidae (gray whale), and finally Balaenopteridae (rorquals + humpback whale). The mtDNA analysis further suggests that four lineages exist within the clade of Eschrichtiidae + Balaenopteridae, including a sister relationship between the humpback and fin whales, and a monophyletic group formed by the blue, sei, and Bryde's whales, each of which represents a newly recognized phylogenetic relationship in Mysticeti. We also estimated the divergence times of all extant mysticete species, accounting for evolutionary rate heterogeneity among lineages. When the mtDNA divergence estimates are compared with the mysticete fossil record, several lineages have molecular divergence estimates strikingly older than indicated by paleontological data. We suggest this discrepancy reflects both a large amount of ancestral polymorphism and long generation times of ancestral baleen whale populations.  相似文献   

19.
Phylogenetic relationships of Croton section Cleodora (Klotzsch) Baill. were evaluated using the nuclear ribosomal ITS and the chloroplast trnL-F and trnH-psbA regions. Our results show a strongly supported clade containing most previously recognized section Cleodora species, plus some other species morphologically similar to them. Two morphological synapomorphies that support section Cleodora as a clade include pistillate flowers in which the sepals overlap to some degree, and styles that are connate at the base to varying degrees. The evolution of vegetative and floral characters that have previously been relied on for taxonomic decisions within this group are evaluated in light of the phylogenetic hypotheses. Within section Cleodora there are two well-supported clades, which are proposed here as subsections (subsection Sphaerogyni and subsection Spruceani). The resulting phylogenetic hypothesis identifies the closest relatives of the medicinally important and essential oil-rich Croton cajucara Benth. as candidates for future screening in phytochemical and pharmacological studies.  相似文献   

20.
Kramer EM  Jaramillo MA  Di Stilio VS 《Genetics》2004,166(2):1011-1023
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号