首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of a study of the effects of chronic exposure to elevated ozone on the cytokinins of mature beech trees. Methods for analysing the cytokinin (CK) content of beech (FAGUS SYLVATICA) were developed using seven enzyme-linked immunosorbent assays (ELISAs). Samples taken during 2003 and 2004 from 10 mature beech trees in Kranzberg forest, 5 trees exposed to twice ambient ozone (2 x O(3)) by free-air fumigation and 5 control trees (1 x O(3)), were analysed. In 2003 and 2004 the cytokinin content of leaf samples followed a similar seasonal pattern. In leaf samples, the content of aromatic types was equal to that of the isoprenoid types. In root samples, the level of aromatic types was no different from leaves, but that of the isoprenoid types was much higher. Leaf and phloem cytokinin contents for 2 x O(3) trees were lower than for 1 x O(3) at almost all sampling times. The effect of ozone was greater for leaves in the sun crown than for leaves in the shade crown. By contrast, the root and xylem contents of cytokinin for 2 x O(3) trees were greatly elevated over the values for 1 x O(3) trees early in the growing season. We propose that O(3)-associated CK destruction in leaves reduces CK-mediated root growth suppression. The resulting increases in root growth and ectomycorrhiza, reported by other groups in the Kranzberg forest project, are likely to be responsible for the increased CK export in xylem, although O(3)-associated CK destruction in the leaves appears to nullify this increase.  相似文献   

2.
Three-year-old beech (Fagus sylvatica) seedlings growing in containers were placed into the sun and shade crown of a mature beech stand exposed to ambient (1 x O(3)) and double ambient (2 x O(3)) ozone concentrations at a free-air exposure system ("Kranzberg Forst", Germany). Pigments, alpha-tocopherol, glutathione, ascorbate, and gas exchange were measured in leaves during 2003 (a drought year) and 2004 (an average year). Sun-exposed seedlings showed higher contents of antioxidants, xanthophylls, and beta-carotene and lower contents of chlorophyll, alpha-carotene, and neoxanthin than shade-exposed seedlings. In 2003 sun-exposed seedlings showed higher contents of carotenoids and total glutathione and lower net photosynthesis rates (A(max)) compared to 2004. O(3) exposure generally affected the content of chlorophyll, the xanthophyll cycle, and the intercellular CO(2) concentration (c(i)). Seedlings differed from the adjacent adult trees in most biochemical and physiological parameters investigated: Sun exposed seedlings showed higher contents of alpha-tocopherol and xanthophylls and lower contents of ascorbate, chlorophyll, neoxanthin, and alpha-carotene compared to adult trees. Shade exposed seedlings had lower contents of xanthophylls, alpha-carotene, and alpha-tocopherol than shade leaves of old-growth trees. In 2003, seedlings had higher A(max), stomatal conductance (g(s)), and c(i) under 2 x O(3) than adult trees. The results showed that shade acclimated beech seedlings are more sensitive to O(3), possibly due to a lower antioxidative capacity per O(3) uptake. We conclude that beech seedlings are uncertain surrogates for adult beech trees.  相似文献   

3.
Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The relationship of COU with effects on gas exchange can apparently be complex and, in fact, varied between years and within the growing season. In addition, high doses of O(3) did not always have significant effects on leaf gas exchange. In view of the key findings, both hypotheses were to be rejected.  相似文献   

4.
In this study the influence of chronic free-air ozone exposure and of different meteorological conditions in the very dry year 2003 and the more humid year 2004 on the antioxidative system in sun and shade leaves of adult FAGUS SYLVATICA trees were investigated. Contents of ascorbate, glutathione, and alpha-tocopherol, as well as chloroplast pigments were determined under ambient (1 x O(3)) and double ambient (2 x O(3)) ozone concentrations. Ozone affected the antioxidative system in June and July, causing lower ascorbate contents in the apoplastic space, a more oxidized redox state of ascorbate and glutathione and an increase in pigment contents predominantly in the shade crown. For all measured parameters significant differences between the years were observed. In 2004 the redox state of ascorbate and glutathione was in a more reduced state and leaf contents of alpha-tocopherol, pigments of the xanthophyll cycle, beta-carotene, lutein, neoxanthin, and alpha-carotene were lower compared to 2003. Contents of total glutathione and chlorophyll a + b were increased in the second year. These results indicate a strong influence of the drought conditions in 2003 on the antioxidative system of beech overruling the ozone effects. Shade leaves showed lower contents of ascorbate in both years and the redox states of ascorbate and glutathione were more oxidized compared to sun leaves. Contents of photoprotective and accessory pigments generally were enhanced and the de-epoxidation state of the xanthophyll cycle was lower in the shade compared to the sun crown. Exhibiting less antioxidants shade leaves seem to be more sensitive against ozone than sun leaves.  相似文献   

5.
Patterns of nitrogen (N) isotope composition (delta(15)N) and total N contents were determined in leaves, fine roots, root-associated ectomycorrhizal fungi (ECM) of adult beech trees (FAGUS SYLVATICA), and soil material under ambient (1 x O(3)) and double ambient (2 x O(3)) atmospheric ozone concentrations over a period of two years. From fine root to leaf material delta(15)N decreased consecutively. Under enhanced ozone concentrations total N was reduced in fine roots and delta(15)N showed a decrease in roots and leaves. In the soil and in most types of mycorrhizae, delta(15)N and total N were not altered due to ozone fumigation. The number of vital ectomycorrhizal root tips increased and the mycorrhizal community structure changed in 2 x O(3). Simultaneously, the specific rate of inorganic N-uptake by the roots was reduced under the double ozone regime. From these results it is assumed that 2 x O(3) changes N-nutrition of the trees at the level of N-acquisition, as indicated by enhanced mycorrhizal root tip density, altered mycorrhizal species composition, and reduced specific N-uptake rates.  相似文献   

6.
Within the scope of quantifying ozone (O(3)) effects on forest tree crowns it is still an open question whether cuvette branches of adult trees are reasonable surrogates for O(3) responses of entire tree crowns and whether twigs exhibit autonomy in defense metabolism in addition to carbon autonomy. Therefore, cuvette-enclosed branches of mature beech (Fagus sylvatica) trees were compared with branches exposed to the same and different ozone regimes by a free-air fumigation system under natural stand conditions by means of a VICE VERSA experiment. For this purpose, cuvettes receiving 1 x O(3) air were mounted in trees exposed to 2 x O(3) and cuvettes receiving 2 x O(3) air were mounted in trees exposed to 1 x O (3) in the upper sun crown. At the end of the fumigation period in September 2004, leaves were examined for differences in gas exchange parameters, pigments, antioxidants, carbohydrates, and stable isotope ratios. No significant differences in foliar gas exchange, total carbohydrates, stable isotope ratios, pigment, and antioxidant contents were found as a consequence of cuvette enclosure (cuvette versus free-air branches) of the same O(3) concentrations besides increase of glucose inside the cuvettes and reduction of the de-epoxidation state of the xanthophyll cycle pigments. No significant ozone effect was found for the investigated gas exchange and most biochemical parameters. The total and oxidized glutathione level of the leaves was increased by the 2 x O(3) treatment in the cuvette and the free-air branches, but this effect was significant only for the free-air branches. From these results we conclude that cuvette branches are useful surrogates for examining the response of entire tree crowns to elevated O(3) and that the defence metabolism of twigs seems to be at least partially autonomous.  相似文献   

7.
Accelerated leaf senescence is one of the harmful effects of elevated tropospheric ozone concentrations ([O(3)]) on plants. The number of studies dealing with mature forest trees is scarce however. Therefore, five 66-year-old beech trees (Fagus sylvatica L.) have been exposed to twice-ambient (2xambient) [O(3)] levels by means of a free-air canopy O(3) exposure system. During the sixth year of exposure, the hypothesis of accelerated leaf senescence in 2xambient [O(3)] compared with ambient [O(3)] trees was tested for both sun and shade leaves. Chlorophyll (chl) fluorescence was used to assess the photosynthetic quantum yield, and chl fluorescence images were processed to compare functional leaf homogeneity and the proportion of O(3)-injured leaf area (stipples) under ambient and 2xambient [O(3)] regimes. Based on the analysis of chl fluorescence images, sun leaves of both ambient and 2xambient [O(3)] trees had apparently developed typical necrotic O(3) stipples during high O(3) episodes in summer, while accelerated senescence was only observed with sun leaves of 2xambient [O(3)] trees. This latter effect was indicated along with a faster decrease of photosynthetic quantum yield, but without evidence of changes in non-photochemical quenching. Overall, treatment effects were small and varied among trees. Therefore, compared with ambient [O(3)], the consequence of the observed O(3)-induced accelerated leaf senescence for the carbon budget is likely limited.  相似文献   

8.
Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital mycorrhizal root tips, fine root (mass) density, root tip density per surface, root area index, concentration of Zn, and Ca/Al ratio. Due to the general reduction in root growth indices and nutrient cycling in ozone-fumigated plants, alterations in soil carbon pools could be predicted.  相似文献   

9.
Databases are needed for the ozone (O(3)) risk assessment on adult forest trees under stand conditions, as mostly juvenile trees have been studied in chamber experiments. A synopsis is presented here from an integrated case study which was conducted on adult FAGUS SYLVATICA trees at a Central-European forest site. Employed was a novel free-air canopy O(3) fumigation methodology which ensured a whole-plant assessment of O(3) sensitivity of the about 30 m tall and 60 years old trees, comparing responses to an experimental 2 x ambient O(3) regime (2 x O(3), max. 150 nl O(3) l (-1)) with those to the unchanged 1 x ambient O(3) regime (1 x O(3)=control) prevailing at the site. Additional experimentation on individual branches and juvenile beech trees exposed within the forest canopy allowed for evaluating the representativeness of young-tree and branch-bag approaches relative to the O(3) sensitivity of the adult trees. The 2 x O(3) regime did not substantially weaken the carbon sink strength of the adult beech trees, given the absence of a statistically significant decline in annual stem growth; a 3 % reduction across five years was demonstrated, however, through modelling upon parameterization with the elaborated database. 2 x O(3) did induce a number of statistically significant tree responses at the cell and leaf level, although the O(3) responsiveness varied between years. Shade leaves displayed an O(3) sensitivity similar to that of sun leaves, while indirect belowground O(3) effects, apparently mediated through hormonal relationships, were reflected by stimulated fine-root and ectomycorrhizal development. Juvenile trees were not reliable surrogates of adult ones in view of O(3) risk assessment. Branch sections enclosed in (climatized) cuvettes, however, turned out to represent the O(3) sensitivity of entire tree crowns. Drought-induced stomatal closure decoupled O(3) intake from O(3) exposure, as in addition, also the "physiologically effective O(3) dose" was subject to change. No evidence emerged for a need to lower the "Critical Level for Ozone" in risk assessment of forest trees, although sensitive tree parameters did not necessarily reflect a linear relationship to O(3) stress. Exposure-based concepts tended to overestimate O(3) risk under drought, which is in support of current efforts to establish flux-related concepts of O(3) intake in risk assessment.  相似文献   

10.
Ozone and light effects on endophytic colonization by Apiognomonia errabunda of adult beech trees (Fagus sylvatica) and their putative mediation by internal defence compounds were studied at the Kranzberg Forest free-air ozone fumigation site. A. errabunda colonization was quantified by "real-time PCR" (QPCR). A. errabunda-specific primers allowed detection without interference by DNA from European beech and several species of common genera of plant pathogenic fungi, such as Mycosphaerella, Alternaria, Botrytis, and Fusarium. Colonization levels of sun and shade leaves of European beech trees exposed either to ambient or twice ambient ozone regimes were determined. Colonization was significantly higher in shade compared to sun leaves. Ozone exhibited a marginally inhibitory effect on fungal colonization only in young leaves in 2002. The hot and dry summer of 2003 reduced fungal colonization dramatically, being more pronounced than ozone treatment or sun exposure. Levels of soluble and cell wall-bound phenolic compounds were approximately twice as high in sun than in shade leaves. Acylated flavonol 3- O-glycosides with putatively high UV-B shielding effect were very low in shade canopy leaves. Ozone had only a minor influence on secondary metabolites in sun leaves. It slightly increased kaempferol 3- O-glucoside levels exclusively in shade leaves. The frequently prominent hydroxycinnamic acid derivative, chlorogenic acid, was tested for its growth inhibiting activity against Apiognomonia and showed an IC50 of approximately 8 mM. Appearance of Apiognomonia-related necroses strongly correlated with the occurrence of the stress metabolite, 3,3',4,4'-tetramethoxybiphenyl. Infection success of Apiognomonia was highly dependent on light exposure, presumably affected by the endogenous levels of constitutive phenolic compounds. Ozone exerted only minor modulating effects, whereas climatic factors, such as pronounced heat periods and drought, were dramatically overriding.  相似文献   

11.
12.
Forest soils are an important but under-studied part of forest ecosystems. The effects of O(3) on below-ground processes in a mature forest have only received limited attention so far. In our study, we have analysed the community of ectomycorrhizal fungi and beech fine root dynamics over two growing seasons (2003 - 2004) in a 70-year old mixed spruce-beech forest stand, in which two groups of five adult beech trees were either fumigated by 2 x ambient ozone concentration or used as control. The main difference between previous studies and our approach was that previous studies were performed on seedlings in pot experiments or in closed or open top chambers, and not IN SITU, in a mature forest stand. Although beech is a relatively unresponsive species to tropospheric O(3), we found a pronounced effect of 2 x O(3) on the number of vital ectomycorrhizal root tips and non-turgescent fine roots. Both categories of roots were significantly increased when compared to controls in two consecutive years at each sampling event. The number of types of ectomycorrhizae and species richness increased in 2004, but not in the extremely dry year 2003. We hypothesised that the observed changes might be an expression of a transitional state in below-ground succession of niches caused by an O(3) induced effect on carbon allocation to roots and the rhizosphere. We have detected changes in ectomycorrhizal species level, however Shannon-Weavers species diversity index and percentage of types of ectomycorrhizae did not change significantly in any sampling year thus indicating our results cannot be unequivocally explained by summer drought in year 2003 or by O(3) exposure alone.  相似文献   

13.
Plant growth largely depends on microbial community structure and function in the rhizosphere. In turn, microbial communities in the rhizosphere rely on carbohydrates provided by the host plant. This paper presents the first study on ozone effects in the plant-rhizosphere-bulk soil system of 4-year-old beech trees using outdoor lysimeters as a research platform. The lysimeters were filled with homogenized soil from the corresponding horizons of a forest site, thus minimizing field heterogeneity. Four lysimeters were treated with ambient ozone (1 x O3) and four with double ambient ozone concentrations (2 x O3; restricted to 150 ppb). In contrast to senescence, which was almost unaffected by ozone treatment, both the photochemical quantum yield of photosystem II (PSII) and leaf gas exchange were reduced (11 - 45 %) under the elevated O3 regime. However, due to large variation between the plants, no statistically significant O3 effect was found. Even though the amount of primary metabolites, such as sugar and starch, was not influenced by elevated O3 concentrations, the reduced photosynthetic performance was reflected in leaf biochemistry in the form of a reduction in soluble phenolic metabolites. The rhizosphere microbial community also responded to the O3 treatment. Both community structure and function were affected, with a tendency towards a lower diversity and a significant reduction in the potential nutrient turnover. In contrast, litter degradation was unaffected by the fumigation, indicating that in situ microbial functionality of the bulk soil did not change.  相似文献   

14.
Hoshika Y  Omasa K  Paoletti E 《PloS one》2012,7(6):e39270
Steady-state and dynamic gas exchange responses to ozone visible injury were investigated in an ozone-sensitive poplar clone under field conditions. The results were translated into whole tree water loss and carbon assimilation by comparing trees exposed to ambient ozone and trees treated with the ozone-protectant ethylenediurea (EDU). Steady-state stomatal conductance and photosynthesis linearly decreased with increasing ozone visible injury. Dynamic responses simulated by severing of a leaf revealed that stomatal sluggishness increased until a threshold of 5% injury and was then fairly constant. Sluggishness resulted from longer time to respond to the closing signal and slower rate of closing. Changes in photosynthesis were driven by the dynamics of stomata. Whole-tree carbon assimilation and water loss were lower in trees exposed to ambient O(3) than in trees protected by EDU, both under steady-state and dynamic conditions. Although stomatal sluggishness is expected to increase water loss, lower stomatal conductance and premature leaf shedding of injured leaves aggravated O(3) effects on whole tree carbon gain, while compensating for water loss. On average, WUE of trees exposed to ambient ozone was 2-4% lower than that of EDU-protected control trees in September and 6-8% lower in October.  相似文献   

15.
The extraordinary drought during the summer of 2003 in Central Europe allowed to examine responses of adult beech trees (Fagus sylvatica) to co-occurring stress by soil moisture deficit and elevated O3 levels under forest conditions in southern Germany. The study comprised tree exposure to the ambient O3 regime at the site and to a twice-ambient O3 regime as released into the canopy through a free-air O3 fumigation system. Annual courses of photosynthesis (A max), stomatal conductance (g s), electron transport rate (ETR) and chlorophyll levels were compared between 2003 and 2004, the latter year representing the humid long-term climate at the site. ETR, A max and g s were lowered during 2003 by drought rather than ozone, whereas chlorophyll levels did not differ between the years. Radial stem increment was reduced in 2003 by drought but fully recovered during the subsequent, humid year. Comparison of AOT40, an O3 exposure-based risk index of O3 stress, and cumulative ozone uptake (COU) yielded a linear relationship throughout humid growth conditions, but a changing slope during 2003. Our findings support the hypothesis that drought protects plants from O3 injury by stomatal closure, which restricts O3 influx into leaves and decouples COU from high external ozone levels. High AOT40 erroneously suggested high O3 risk under drought. Enhanced ozone levels did not aggravate drought effects in leaves and stem.  相似文献   

16.
The influence of long-term free-air ozone fumigation and canopy position on leaf contents of total glutathione, its redox state, non-structural proteins (NSP), soluble amino compounds, and total soluble sugars in old-growth beech (FAGUS SYLVATICA) and spruce (PICEA ABIES) trees were determined over a period of five years. Ozone fumigation had weak effects on the analysed metabolites of both tree species and significant changes in the contents of total glutathione, NSP, and soluble sugars were observed only selectively. Beech leaves were affected by crown position to a higher extent than spruce needles and exhibited lower contents of total glutathione and NSP and total soluble sugars, but enhanced contents of oxidised glutathione and amino compounds in the shade compared to the sun crown. Contents of total soluble sugars generally were decreased in shade compared to sun needles of spruce trees. Interspecific differences between beech and spruce were more distinct in the sun compared to the shade crown. Contents of total glutathione were increased whilst contents of amino compounds and total soluble sugars were lower in spruce needles compared to beech leaves. The metabolites determined showed individual patterns in the course of the five measurement years. Contents of total glutathione and its redox state correlated with air temperature and global radiation, indicating an important role for the antioxidant at low temperatures. Correlations of glutathione with instantaneous ozone concentrations seem to be a secondary effect. Differences in proteins and/or amino compounds in the inter-annual course are assumed to be a consequence of alterations in specific N uptake rates.  相似文献   

17.
Beech forests naturally regenerating from clear-cutting can exhibit different microclimates depending on size of saplings and stem density. When beech trees are young and stem density is low, the level of radiation inside the ecosystem reaching the soil surface is high; consequently, air and soil temperatures rise and the soil water content may decrease. These microclimatic parameters presumably will affect the anatomy, photosynthesis, and carbon metabolism of beech leaves. We studied the morphology and physiology of sun and shade leaves of beech trees differing in age and growing within clear-cut areas with distinct microclimate. Results were compared with those of adult trees in an unmanaged forest. We selected a stand clear-cut in 2001 (14,000 trees ha−1), another clear-cut in 1996 (44,000 trees ha−1) and an unmanaged forest (1,000 trees ha−1). Photosynthetic photon flux density (PPFD) incident on sun leaves, air temperature, soil moisture, and soil temperature within the forests affected water status and carbohydrate storage in all trees. As trees became older, PPFD also influenced pigment composition and Rubisco activity in sun leaves. On the other hand, shade leaves from the oldest trees were the most sensitive to PPFD, air temperature, and soil moisture and temperature inside the forest. Contrariwise, microclimatic parameters slightly affected the physiology of shade leaves of the beech in the stand with the highest light attenuation. Air and soil temperatures were the parameters that most affected the photosynthetic pigments and carbohydrate storage in shade leaves of the youngest trees.  相似文献   

18.
A lysimeter study was performed to monitor long term effects of chronic ozone enrichment on saplings of European beech (Fagus sylvatica L). After 3 years of ozone exposure a root infection with Phytophthora citricola Swada was established in the fourth year to study the interaction between elevated ozone and the root infection on the carbon budget of beech saplings. By using quantitative PCR no differences in root infection with P. citricola were observed between the ozone treatments. In contrast to the first 3 years of ozone exposure, sucrose and starch concentrations in leaves were diminished in ozone treated plants in the fourth year. The root infection reduced sucrose concentrations in leaves. Starch reserves of the heterotrophic biomass were not affected by any treatments. Thus 4 years of ozone exposure and 1 year of P. citricola root infection had only limited effect on carbohydrate metabolism in beech saplings.  相似文献   

19.
Some ecophysiological features in sun and shade leaves of tall European beech trees (Fagus sylvatica L.) growing in a natural forest stand were investigated. Quantitative leaf characteristics were followed in the field and under controlled conditions. In the sun leaves significantly higher rates of photosynthesis, photorespiration and dark respiration, and also photosynthetic CO2 fixation capacity, photosynthetic productivity, and saturating, adaptation and compensating irradiances were found. Specific leaf mass, mean leaf area, stomata density and size as well as the chlorophyll content per unit dry mass were also significantly different in both types of the leaves. Higher photosynthetic efficiency in the shade leaves allows them a better utilization of the lower irradiance for carbon dioxide uptake. The importance of these findings for annual carbon gain of the shade tolerant European beech species is also discussed.  相似文献   

20.
In a two-year phytotron study, juvenile trees of European beech (Fagus sylvatica) and Norway spruce (Picea abies) were grown in mixture under ambient and twice ambient ozone (O3) and infected with the root pathogen Phytophthora citricola. We investigated the influence of O3 on the trees' susceptibility to the root pathogen and assessed, through a 15N-labelling experiment, the impact of both treatments (O3 exposure and infection) on belowground competitiveness. The hypotheses tested were that: (1) both P. citricola and O3 reduce the belowground competitiveness (in view of N acquisition), and (2) that susceptibility to P. citricola infection is reduced through acclimation to enhanced O3 exposure. Belowground competitiveness was quantified via cost/benefit relationships, i.e., the ratio of structural investment in roots relative to their uptake of 15N. Beech had a lower biomass acquisition and captured less 15N under enhanced O3 and P. citricola infection alone than spruce, whereas the latter species appeared to profit from the lower resource acquisition of beech in these treatments. Nevertheless, in the combined treatment, susceptibility to P. citricola of spruce was increased, while beech growth and 15N uptake were not further reduced below the levels found under the single treatments. Potential trade-offs between stress defence, growth performance, and associated nitrogen status are discussed for trees affected through O3 and/or pathogen infection. With respect to growth performance, it is concluded that O3 enhances susceptibility to the pathogen in spruce, but apparently raises the defence capacity in beech..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号