首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular targets for trace amines (TAs) such as p-tyramine and beta-phenylethylamine have been recently discovered and have been shown to comprise a family of G-protein-coupled receptors based on DNA sequence homologies. These have been termed trace amine-associated receptors (TAARs) because TAs do not activate all of the identified receptors. Because TA may be involved in modulating a variety of behaviors including mood, cognition, and addiction, it is of interest to discover novel ligands for TAARs to probe the role TAs play in brain function. Pharmacophore development for the G(s)-coupled human TAAR1 (hTAAR1) would be aided by a rapid functional assay amenable to screening libraries of compounds. Accordingly, the authors used RD-HGA16 CHO-1 cells from Molecular Devices, which stably express the promiscuous G(q), G(alpha16), to create a cell line stably expressing hTAAR1, thereby coupling receptor activation to the mobilization of internal calcium. They used this cell line to develop a homogenous fluorometric imaging plate reader-based assay using the Calcium 3 fluorescent dye. The EC50 and Emax data obtained for known TAs are in close agreement with previous work using transient hTAAR1 expression systems or a chimeric receptor. These data indicate that the hTAAR1 retains its reported pharmacological characteristics when coupled to G(alpha16).  相似文献   

2.
The availability of fully sequenced genomes allows the in silico analysis of whole gene families in a given genome. A particularly large and interesting gene family is the G-protein-coupled receptor family. These receptors detect a variety of extracellular signals and transduce them, generally via heterotrimeric G-proteins, to effector proteins inside the cell and thus elicit a physiological response. G-protein-coupled receptors are found in all eukaryotes and constitute in vertebrates 3-5% of all genes. They are also very important drug targets and approximately 25 of the top 100 selling drugs are directed against these receptors. The Dictyostelium discoideum genome contains a surprisingly high number of 55 such receptors, approximately 0.5% of the encoded genes. Besides the four well-studied cAMP receptors the genome encodes eight additional cAMP receptor-like proteins and one of these is distinguished by a novel domain structure, one secretin-like receptor, 17 GABA(B)-like and 25 Frizzled-like receptors. The existence of the latter three types of receptors in D. discoideum was surprising because they had not been observed outside the animal kingdom before. Their presence suggests unprecedentedly complex and so far unknown signaling activities in this lower eukaryote.  相似文献   

3.
《Biophysical journal》2022,121(17):3175-3187
Single-molecule counting techniques enable a precise determination of the intracellular abundance and stoichiometry of proteins and macromolecular complexes. These details are often challenging to quantitatively assess yet are essential for our understanding of cellular function. Consider G-protein-coupled receptors—an expansive class of transmembrane signaling proteins that participate in many vital physiological functions making them a popular target for drug development. While early evidence for the role of oligomerization in receptor signaling came from ensemble biochemical and biophysical assays, innovations in single-molecule measurements are now driving a paradigm shift in our understanding of its relevance. Here, we review recent developments in single-molecule counting with a focus on photobleaching step counting and the emerging technique of quantitative single-molecule localization microscopy—with a particular emphasis on the potential for these techniques to advance our understanding of the role of oligomerization in G-protein-coupled receptor signaling.  相似文献   

4.
The critical involvement of GPCRs (G-protein-coupled receptors) in nearly all physiological processes, and the presence of these receptors at the interface between the extracellular and the intracellular milieu, has positioned these receptors as pivotal therapeutic targets. Although a large number of drugs targeting GPCRs are currently available, significant efforts have been directed towards understanding receptor properties, with the goal of identifying and designing improved receptor ligands. Recent advances in GPCR pharmacology have demonstrated that different ligands binding to the same receptor can activate discrete sets of downstream effectors, a phenomenon known as 'ligand-directed signal specificity', which is currently being explored for drug development due to its potential therapeutic advantage. Emerging studies suggest that GPCR responses can also be modulated by contextual factors, such as interactions with other GPCRs. Association between different GPCR types leads to the formation of complexes, or GPCR heteromers, with distinct and unique signalling properties. Some of these heteromers activate discrete sets of signalling effectors upon activation by the same ligand, a phenomenon termed 'heteromer-directed signalling specificity'. This has been shown to be involved in the physiological role of receptors and, in some cases, in disease-specific dysregulation of a receptor effect. Hence targeting GPCR heteromers constitutes an emerging strategy to select receptor-specific responses and is likely to be useful in achieving specific beneficial therapeutic effects.  相似文献   

5.
The calcitonin-gene-related peptide (CGRP) receptor component protein (RCP) is a 148-amino-acid intracellular protein that is required for G-protein-coupled signal transduction at receptors for the neuropeptide CGRP. RCP works in conjunction with two other proteins to constitute a functional CGRP receptor: calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying protein 1 (RAMP1). CRLR has the stereotypical seven-transmembrane topology of a G-protein-coupled receptor; it requires RAMP1 for trafficking to the cell surface and for ligand specificity, and requires RCP for coupling to the cellular signal transduction pathway. We have made cell lines that expressed an antisense construct of RCP and determined that CGRP-mediated signal transduction was reduced, while CGRP binding was unaffected. Furthermore, signalling at two other endogenous G-protein-coupled receptors was unaffected, suggesting that RCP was specific for a limited subset of receptors.  相似文献   

6.
The availability of fully sequenced genomes allows the in silico analysis of whole gene families in a given genome. A particularly large and interesting gene family is the G-protein-coupled receptor family. These receptors detect a variety of extracellular signals and transduce them, generally via heterotrimeric G-proteins, to effector proteins inside the cell and thus elicit a physiological response. G-protein-coupled receptors are found in all eukaryotes and constitute in vertebrates 3–5% of all genes. They are also very important drug targets and approximately 25 of the top 100 selling drugs are directed against these receptors. The Dictyostelium discoideum genome contains a surprisingly high number of 55 such receptors, approximately 0.5% of the encoded genes. Besides the four well-studied cAMP receptors the genome encodes eight additional cAMP receptor-like proteins and one of these is distinguished by a novel domain structure, one secretin-like receptor, 17 GABAB-like and 25 Frizzled-like receptors. The existence of the latter three types of receptors in D. discoideum was surprising because they had not been observed outside the animal kingdom before. Their presence suggests unprecedentedly complex and so far unknown signaling activities in this lower eukaryote.  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite that regulates diverse biological functions. S1P has been identified as a high-affinity ligand for a family of five G-protein-coupled receptors, known as the S1P receptors. The physiological role of the S1P receptor S1P(1) in vascular maturation was recently revealed by gene disruption in mice. In addition to other cellular processes, the binding of S1P to its receptors regulates motility and directional migration of a variety of cell types, including endothelial cells and vascular smooth muscle cells. This review focuses on the important role of S1P and its receptors in cell migration and describes a new paradigm for receptor cross-communication in which transactivation of S1P(1) by a receptor tyrosine kinase (PDGFR) is crucial for cell motility.  相似文献   

8.
During the last few years, it has become clear that sphingolipids are sources of important signalling molecules. Particularly, the sphingolipid metabolites, ceramide and S1P, have emerged as a new class of potent bioactive molecules, implicated in a variety of cellular processes such as cell differentiation, apoptosis, and proliferation. Sphingomyelin (SM) is the major membrane sphingolipid and is the precursor for the bioactive products. Ceramide is formed from SM by the action of sphingomyelinases (SMase), however, ceramide can be very rapidly hydrolysed, by ceramidases to yield sphingosine, and sphingosine can be phosphorylated by sphingosine kinase (SphK) to yield S1P. In immune cells, the sphingolipid metabolism is tightly related to the main stages of immune cell development, differentiation, activation, and proliferation, transduced into physiological responses such as survival, calcium mobilization, cytoskeletal reorganization and chemotaxis. Several biological effectors have been shown to promote the synthesis of S1P, including growth factors, cytokines, and antigen and G-protein-coupled receptor agonists. Interest in S1P focused recently on two distinct cellular actions of this lipid, namely its function as an intracellular second messenger, capable of triggering calcium release from internal stores, and as an extracellular ligand activating specific G protein-coupled receptors. Inhibition of SphK stimulation strongly reduced or even prevented cellular events triggered by several proinflammatory agonists, such as receptor-stimulated DNA synthesis, Ca(2+) mobilization, degranulation, chemotaxis and cytokine production. Another very important observation is the direct role played by S1P in chemotaxis, and cellular escape from apoptosis. As an extracellular mediator, several studies have now shown that S1P binds a number of G-protein-coupled receptors (GPCR) encoded by endothelial differentiation genes (EDG), collectively known as the S1P-receptors. Binding of S1P to these receptors trigger an wide range of cellular responses including proliferation, enhanced extracellular matrix assembly, stimulation of adherent junctions, formation of actin stress fibres, and inhibition of apoptosis induced by either ceramide or growth factor withdrawal. Moreover, blocking S1P1-receptor inhibits lymphocyte egress from lymphatic organs. This review summarises the evidence linking SphK signalling pathway to immune-cell activation and based on these data discuss the potential for targeting SphKs to suppress inflammation and other pathological conditions.  相似文献   

9.
G-protein-coupled receptors are hyper-phosphorylated in a process that controls receptor coupling to downstream signaling pathways. The pattern of receptor phosphorylation has been proposed to generate a "bar code" that can be varied in a tissue-specific manner to direct physiologically relevant receptor signaling. If such a mechanism existed, receptors would be expected to be phosphorylated in a cell/tissue-specific manner. Using tryptic phosphopeptide maps, mass spectrometry, and phospho-specific antibodies, it was determined here that the prototypical G(q/11)-coupled M(3)-muscarinic receptor was indeed differentially phosphorylated in various cell and tissue types supporting a role for differential receptor phosphorylation in directing tissue-specific signaling. Furthermore, the phosphorylation profile of the M(3)-muscarinic receptor was also dependent on the stimulus. Full and partial agonists to the M(3)-muscarinic receptor were observed to direct phosphorylation preferentially to specific sites. This hitherto unappreciated property of ligands raises the possibility that one mechanism underlying ligand bias/functional selectivity, a process where ligands direct receptors to preferred signaling pathways, may be centered on the capacity of ligands to promote receptor phosphorylation at specific sites.  相似文献   

10.
Sphingosine-1-phosphate (S1P) is a ubiquitous, lipophilic cellular mediator that acts in part by activation of G-protein-coupled receptor. Modulation of S1P signaling is an emerging pharmacotherapeutic target for immunomodulatory drugs. Although multiple S1P receptor types exist in the CNS, little is known about their function. Here, we report that S1P stimulated G-protein activity in the CNS, and results from [35S]GTPγS autoradiography using the S1P1-selective agonist SEW2871 and the S1P1/3-selective antagonist VPC44116 show that in several regions a majority of this activity is mediated by S1P1 receptors. S1P receptor activation inhibited glutamatergic neurotransmission as determined by electrophysiological recordings in cortical neurons in vitro , and this effect was mimicked by SEW2871 and inhibited by VPC44116. Moreover, central administration of S1P produced in vivo effects resembling the actions of cannabinoids, including thermal antinociception, hypothermia, catalepsy and hypolocomotion, but these actions were independent of CB1 receptors. At least one of the central effects of S1P, thermal antinociception, is also at least partly S1P1 receptor mediated because it was produced by SEW2871 and attenuated by VPC44116. These results indicate that CNS S1P receptors are part of a physiologically relevant and widespread neuromodulatory system, and that the S1P1 receptor contributes to S1P-mediated antinociception.  相似文献   

11.
It is firmly established that the activation of many heptahelical receptors by extracellular agonists leads to the activation of effectors such as phospholipase Cbeta (PLCbeta), the subsequent production of inositol-1,4,5-trisphosphate (IP3), and a resultant increase in intracellular free Ca2+. Heterotrimeric G-proteins have a critical role in transducing the signal from the heptahelical receptor to PLCbeta and in determining the specificity and duration of the cellular responses. There remain, however, a number of areas of uncertainty regarding the exact mechanisms involved in regulating G-protein-mediated receptor-effector coupling in different cell types. For example, the molecular identity of the G-protein involved and the degree of isoform specificity among G-proteins of the same family and their receptors remains unclear. It is also not known in many cell types whether it is the alpha- or the betagamma-subunits of these G-proteins that activate PLCbeta. In order to address these issues, we have used replication-deficient adenoviruses as a tool to deliver, into intact epithelial cells, transgenes coding for proteins involved in G-protein-coupled receptor signaling pathways.  相似文献   

12.
Lehman CW  Lee JD  Komives CF 《Genomics》2005,85(3):386-391
Olfactory receptors are a diverse set of G-protein-coupled receptors (GPCRs) that localize to cellular plasma membranes in the olfactory epithelium. Associated trafficking proteins often assist in targeting these GPCRs to the membrane, facilitating function. One such trafficking protein has been isolated as a mutant defective for both odorant response and proper receptor localization in Caenorhabditis elegans. This gene (ODR-4) allows for functional expression of olfactory receptors in heterologous cells that are otherwise incapable of targeting. We have isolated a full-length human cDNA that is homologous to the C. elegans gene at the protein level across nearly the entire gene by using a novel RecA-based gene enrichment procedure. This sequence is homologous to a family of orthologs that share predicted structural features, indicating a conserved function. The gene was expressed in 41 of 44 human, mouse, and rat tissues, suggesting an important role in trafficking olfactory and other GPCRs.  相似文献   

13.
Seven transmembrane domain G-protein-coupled receptors constitute the largest family of proteins in mammals. Signal transduction events mediated by such receptors are the primary means by which cells communicate with and respond to their external environment. The major paradigm in this signal transduction process is that stimulation of the receptor leads to the recruitment and activation of heterotrimeric GTP-binding proteins. These initial events, which are fundamental to all types of G-protein-coupled receptor signaling, occur at the plasma membrane via protein–protein interactions. As a result, the dynamics of the activated receptor on cell surfaces represents an important determinant in its encounter with G-proteins, and has significant impact on the overall efficiency of the signal transduction process. We have monitored the cell surface dynamics of the serotonin1A receptor, an important member of the G-protein-coupled receptor superfamily, in relation to its interaction with G-proteins. Fluorescence recovery after photobleaching experiments carried out with the receptor tagged to the enhanced yellow fluorescent protein indicate that G-protein activation alters the diffusion properties of the receptor in a manner suggesting the activation process leads to dissociation of G-proteins from the receptor. This result demonstrates that the cell surface dynamics of the serotonin1A receptor is modulated in a G-protein-dependent manner. Importantly, this result could provide the basis for a sensitive and powerful approach to assess receptor/G-protein interaction in an intact cellular environment.  相似文献   

14.
Whereas most membrane receptors are oligomeric entities, G-protein-coupled receptors have long been thought to function as monomers. Within the last 15 years, accumulating data have indicated that G-protein-coupled receptors can form dimers or even higher ordered oligomers, but the general functional significance of this phenomena is not yet clear. Among the large G-protein-coupled receptor family, class C receptors represent a well-recognized example of constitutive dimers, both subunits being linked, in most cases, by a disulfide bridge. In this review article, we show that class C G-protein-coupled receptors are multidomain proteins and highlight the importance of their dimerization for activation. We illustrate several consequences of this in terms of specific functional properties and drug development.  相似文献   

15.
A lymphoid-specific member of the G-protein-coupled receptor family has been identified by PCR with degenerate oligonucleotides. We have determined that this receptor, also reported as the Epstein-Barr-induced cDNA EBI1, is expressed in normal lymphoid tissues and in several B- and T-lymphocyte cell lines. While the function and the ligand for EBI1 remain unknown, its sequence and gene structure suggest that it is related to the receptors that recognize chemoattractants, such as interleukin-8, RANTES, C5a, and fMet-Leu-Phe. Like the chemoattractant receptors, EBI1 contains intervening sequences near its 5′ end; however, EBI1 is unique in that both of its introns interrupt the coding region of the first extracellular domain. The gene is encoded on human chromosome 17q12-q21.2. None of the other G-protein-coupled receptors has been mapped to this region, but the C-C chemokine family has been mapped to 17q11-q21. The mouse EBI1 cDNA has also been isolated and encodes a protein with 86% identity to the human homolog.  相似文献   

16.
A number of unusual seven-transmembrane molecules have recently been characterized that have significant amino acid sequence similarity within the membrane-spanning hydrophobic regions and intervening loops to members of G-protein-coupled receptor family B. However, in contrast to the family-B G-protein-coupled receptors, these molecules have unusually large N-terminal extracellular domains that contain a number of well- characterized protein modules. The range of cell types expressing these complex molecules and their potential roles in cell adhesion and signalling have become a major focus of research in a number of biological systems.  相似文献   

17.
The receptors for the peptide hormones relaxin and insulin-like peptide 3 (INSL3) are the leucine-rich repeat-containing G-protein-coupled receptors LGR7 and LGR8 recently renamed as the relaxin family peptide (RXFP) receptors, RXFP1 and RXFP2, respectively. These receptors differ from other LGRs by the addition of an N-terminal low density lipoprotein receptor class A (LDLa) module and are the only human G-protein-coupled receptors to contain such a domain. Recently it was shown that the LDLa module of the RXFP1 and RXFP2 receptors is essential for ligand-stimulated cAMP signaling. The mechanism by which the LDLa module modulates receptor signaling is unknown; however, it represents a unique paradigm in understanding G-protein-coupled receptor signaling. Here we present the structure of the RXFP1 receptor LDLa module determined by solution NMR spectroscopy. The structure is similar to other LDLa modules but shows small differences in side chain orientations and inter-residue packing. Interchange of the module with the second ligand binding domain of the LDL receptor, LB2, results in a receptor that binds relaxin with full affinity but is unable to signal. Furthermore, we demonstrate via structural studies on mutated LDLa modules and functional studies on mutated full-length receptors that a hydrophobic surface within the N-terminal region of the module is essential for activation of RXFP1 receptor signal in response to relaxin stimulation. This study has highlighted the necessity to understand the structural effects of single amino acid mutations on the LDLa module to fully interpret the effects of these mutations on receptor activity.  相似文献   

18.
《TARGETS》2002,1(6):206-213
Despite current drug therapies, including those that target enzymes, channels and known G-protein-coupled receptors (GPCRs), cardiovascular disease remains the major cause of ill health, which suggests that other transmitter systems might be involved in this disease. In humans, ∼175 genes have been predicted to encode ‘orphan’ GPCRs, where the endogenous ligand is not yet known. As a result of intensive screening using ‘reverse pharmacology’, an increasing number of orphan receptors are being paired with their cognate ligands, many of which are peptides. The existence of some of these peptides such as urotensin-II and relaxin had been known for some time but others, including ghrelin and apelin, represent novel sequences. The pharmacological characterization of these emerging peptide–receptor systems is a tantalising area of cardiovascular research, with the prospect of identifying new therapeutic targets.  相似文献   

19.
The classical idea that G-protein-coupled receptors (GPCRs) function as monomeric entities has been unsettled by the emerging concept of GPCR dimerization. Recent findings have indicated not only that many GPCRs exist as homodimers and heterodimers, but also that their oligomeric assembly could have important functional roles. Several studies have shown that dimerization occurs early after biosynthesis, suggesting that it has a primary role in receptor maturation. G-protein coupling, downstream signalling and regulatory processes such as internalization have also been shown to be influenced by the dimeric nature of the receptors. In addition to raising fundamental questions about GPCR function, the concept of dimerization could be important in the development and screening of drugs that act through this receptor class. In particular, the changes in ligand-binding and signalling properties that accompany heterodimerization could give rise to an unexpected pharmacological diversity that would need to be considered.  相似文献   

20.
G-protein-coupled receptors have become a target in utilizing bioinformatics and genomics technology to facilitate drug discovery for psychiatric diseases. In this study the covariant-discriminant algorithm [Chou and Elrod (1999) Protein Eng., 12, 107-118] has been used to analyze the correlation between the types of G-protein-coupled receptors and the amino acid composition. It has been found that different types of G-protein-coupled receptors are quite closely correlated with the amino acid composition, implying that the types of G-protein-coupled receptors are predictable to a considerably accurate extent if a good training data set can be established for that purpose. The method derived here can be also used to do preliminary classification of orphan G-protein-coupled receptors. This will significantly expedite the process of identifying proper G-protein-coupled receptors for drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号