首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The survival percentage of Drosophila melanogaster larvae on synthetic media containing different concentrations of heavy metals, including Cd, Cu, Pb, and Zn, in the first generation indicated no significant reduction in their growth and development up to 500 ppm for all tested heavy-metal concentrations. At 500 ppm, results showed that there was a significant reduction in pupa and adult stages: 65% and 25% for Cd, 50% and 25% for Cu, 100% and 95% for Pb, and 85% and 75% for Zn, respectively. The survival percentages at 1000 ppm were further significantly reduced: 15% and 0% for Cd, 35% and 15% for Cu, 45% and 90% for Pb, and 65% and 35% for Zn, respectively for pupa and adult stages. For the second generation, there was no significant reduction in survival growth and development up to 100 ppm, but above 500 ppm, there was a significant reduction. For most of these heavy-metal concentrations, the survival percentages of the second generation at the pupa stage was higher than the first generation, whereas for the adult, there was a lower survival percentage, indicating some effect on metamorphosis of these heavy-metal concentrations on Drosophila melanogaster Comparing the survival percentage between first and second generations at 500 ppm for pupa indicate a significant increase on Cu only, and for the adult, there was a significant reduction for Cd.  相似文献   

2.
Lack of nitrogen, phosphorus, or all nutrients, extremes of pH (<4, >11), presence of ‘heavy’ metals (Co, Cu, Zn, Hg, Pb; 0.5–10 ppm) or pesticides (carbofuran, 2,4-D, dithane, phorate, or bavistin; 1–50 ppm) decreased to various extent or completely inhibited the survival of vegetative cells in all studied algae. The formation of akinetes, thier viability and germination inAnabaena iyengarii, Westiellopsis prolifica, Nostochopsis lobatus andPithophora oedogonia and the formation of zoosporangia, their viability, and the germination of zoospores inCladophora glomerata andRhizoclonium hieroglyphicum was affected. The formation of viable akinetes or zoosporangia was shown to be directly linked with vegetative cell survival and growth; it could not be induced by any chemical stress imposed.  相似文献   

3.
The aim of this study was to evaluate the potential benefit of combined treatment with zinc (Zn) and selenium (Se) in reversing cadmium (Cd)-induced thyroid dysfunction compared to Se or Zn treatment alone in rats exposed to Cd. For this purpose, 30 adult male Wistar albino rats were equally divided into control and four treated groups receiving either 200 ppm Cd (as CdCl2), 200 ppm Cd + 500 ppm Zn (as ZnCl2), 200 ppm Cd + 0.1 ppm Se (as Na2SeO3), or 200 ppm Cd + 500 ppm Zn + 0.1 ppm Se in their drinking water for 35 days. The results showed that Cd exposure increased significantly the relative thyroid weight (RTW), the thyroid Cd concentration, and the serum thyroid stimulating hormone (TSH) level, whereas the serum thyroxine (T4) level was decreased compared to control rats. The treatment of Cd-exposed rats with Se alone only partially protected from the Cd-induced decrease in serum T4 level. The treatment of Cd-exposed animals with Zn alone partially protected against Cd-induced thyroid dysfunction by maintaining normal RTW and by decreasing Cd concentration in the thyroid. It also partially prevents Cd-induced decrease in serum T4 level. The combined treatment of Cd-exposed animals with Se and Zn induced a more significant decrease in the thyroid Cd concentration than the Zn supplement and a total correction of the RTW. This treatment was also more effective than that with Se or Zn alone in reversing Cd-induced decrease in serum T4 level and Cd-induced increase in serum TSH level. Se and Zn can have a synergistic role against Cd-induced thyroid dysfunction.  相似文献   

4.
The mechanisms of Cu and Zn resistance in cultured Nicotianaplumbaginifolia cells were investigated. When crude extractsof both the Cu and Zn resistant cells were passed through SephadexG-75 gel filtration columns, two metal containing peaks wereidentified. In each case the Cu or Zn was associated with ahigh molecular weight fraction (ca. 70,000) and a low molecularweight fraction (less than 3,000) with the majority being associatedwith the low molecular weight fraction. The low molecular weightfraction in particular increased upon exposure of the cellsto the metals. Both the Cu and Zn resistant cells accumulated higher levelsof citrate and malate than the wild type cells in the presenceof the metals. The addition of citrate or malate, but not fumarateor succinate to the culture medium prevented Cu or Zn toxicityto wild type cells. These results suggest that the N. plumbaginifoliacells selected as resistant to Cu or Zn are resistant, at leastin part, because of their ability to accumulate the chelators,citrate and malate, in the presence of the metals. 1Present address: Plantech Research Institute, MCI ResearchCenter, 1000 Kamoshida-cho, Midoriku, Yokohama 227 Japan (Received June 30, 1986; Accepted December 1, 1986)  相似文献   

5.
Ergosterol content was determined in 20 white-rot fungi isolates and the values ranged from 2380 to 13 060 μg g−1 fungal biomass. Significant changes of ergosterol content according the physiological stage for Bjerkandera adusta 4312 and Coriolopsis gallica 8260 were found, showing the highest values during the stationary phase. However, in the case of Phanerochaete chrysosporium 3642, no changes were detected during growth. The effect of pollutants, such as heavy metals and fungicides, on the ergosterol content of C. gallica was determined. Heavy metals (Cu 80 ppm, Zn 50 ppm or Cd 10 ppm) and fungicides (thiram 3 ppm or pentachlorophenol 1.5 ppm) at concentrations that reduce the metabolic activity between 18% and 53% (pollutant-stressed cultures) did not affect the ergosterol content. Only the fungicide zineb (25 ppm) reduced significantly the ergosterol content in biomass basis. In soil experiments with Cu (80 ppm) or thiram (10 ppm) after 15 and 30 days of incubation, the ergosterol content in soil was linearly correlated to the fungal biomass C in both polluted and control soil cultures. The ergosterol content was independent of the presence or the absence of pollutants. Thus, these results indicate that ergosterol can be a useful indicator for fungal biomass in polluted soils, and can be applied for monitoring bioremediation processes.  相似文献   

6.
Studies have been carried out to determine the potential for the detection of different microbial species (Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa), alone and in the presence of low concentrations of different heavy metals (As, Cd, Pb and Zn) in bottled, reverse osmosis (RO) and tap water, using an electronic nose. Studies show that it is possible to discriminate control water samples from water contaminated with 0.5 ppm of a mixture of metals. The presence of heavy metals may modify the activity of microorganisms and thus the volatile production patterns. Bacterial species at 10(2)-10(4) colony forming units (CFUs) ml(-1) could be detected after 24 h of incubation. Work is in progress to identify the limits of detection for a range of other microorganisms, including, fungi and cyanobacteria, and chlorinated phenols using electronic nose technology.  相似文献   

7.
Concentrations of Pb, Zn, Cd, Cu, Cr, Co, and Ni were determined in roadside topsoil collected from locations of varied vehicular traffic densities in the city of Ibadan, Nigeria, with a view to determining the level of contamination and the contribution of traffic density. Levels of Pb, Zn, Cd, and Cu were elevated above background concentrations measured in control areas. Average values (ppm) for all sample locations were Pb — 81±140; Zn — 48±37; Cd — 0.55±0.49; Cu — 17±17; Cr — 22.1±9.6; Co — 7.9±3.8; Ni — 10.5±9.7. Factors of accumulation of metals in roadsides relative to control sites were highest for Pb. Vehicular traffic was not an important source of chromium, cobalt and nickel, for which roadside concentrations were about those of the control sites. Metal concentrations were poorly correlated with traffic volumes. An average of about 60% of total soil concentration of the metals were determined to be held in bioavailable geochemical phases, of which the highest concentrations were mostly held in either the reducible or oxidizable phase. Levels of the metals in the topsoil were generally lower than the soil quality criteria of some developed countries.  相似文献   

8.
The purpose of this study was to investigate the interaction and main effects of supplemental Zn and Mn levels on growth, tissue mineral uptake, and immune response in broiler chicken. A basal diet of corn–soybean meal was supplemented with Zn at 40, 80, or 160 ppm and Mn at 60, 120, or 240 ppm in a factorial pattern to constitute nine experimental diets. Each diet was offered to nine replicates of six chicks in stainless steel battery brooders. At 35 days of age, body weight gain, feed conversion efficiency, hock joint scores, tibia weight, tibia strength, and percent ash were not influenced by Zn and Mn levels and their interactions. The concentration of Zn (207–238 ppm) and Mn (11.8–16.3 ppm) in tibia increased linearly with progressive raise of mineral inclusion in diets. Mn at 240 ppm level caused higher retention of Zn in tibia, but not vice versa. Manganese either alone or in combination with Zn (Zn160/Mn120 ppm) significantly reduced Cu retention (10.1–7.2 ppm) in tibia. Even in the hepatic tissue, Zn (93.6–98.4 ppm) and Mn (9.3–10.2 ppm) concentration increased linearly with their levels of inclusion in diets. When Zn and Mn levels were maintained at 4:3 ratio (80:60 or 160:120 ppm), the concentration of Zn (100–106 ppm) in liver was higher, while that of Mn was significantly more with low level of Zn (40 ppm) in diet. However, Mn supplementation at 120 ppm level and above significantly decreased Cu accumulation (19.5–17.1 ppm) in liver, but Mn × Zn interaction had no effect on Cu retention. The immune response measured as antibody titers to sheep RBC increased (5.9–7.9 log2) significantly with higher Zn (80 ppm) supplementation and cell-mediated immune response to phytohemagglutinin (0.57–0.78) with Mn level at 120 ppm. In summary, Zn (40 ppm) and Mn (60 ppm) as recommended by NRC was sufficient for broiler performance and bone parameters. Mn complimented Zn retention in tibia and antagonized Cu in tibia and liver tissues. Higher levels of Zn (80 ppm) and Mn (120 ppm) than those recommended by NRC were needed for improved immune response in broilers at 35 days of age.  相似文献   

9.
Growth response ofPhormidium uncinatum, a filamentous cyanobacterium without heterocysts, in the presence of graded concentrations of zinc was studied in pure culture. Growth at higher zinc concentrations was lower than the control. Tolerance to zinc (50 ppm) was induced in this strain by gradually transferring it to higher concentrations of Zn. The Zn-tolerant strain in turn developed tolerance to other heavy metals,e.g. Cd, Pb, along with resistance to infection by LPP-1 cyanophage, as distinct from the normal Zn sensitive strain.  相似文献   

10.
Protection by metallothionein against cadmium toxicity   总被引:1,自引:0,他引:1  
1. The protective effect against Cd toxicity of prior exposure to Cd or Zn solutions at low concentration was studied. 2. Carp were bred in tap water (A), 1 ppm Cd solution (B) and 5 ppm Zn solution (C) for 14 days and then transferred into 15 ppm Cd solution. The survival ratio of carp decreased in the order: (C):(B):(A). 3. Binding capacity of Cd to high molecular and metallothionein fractions in the cytoplasmic solutions of the hepato-pancreas was studied and the binding capacity to the metallothionein fraction was stronger than that to the high molecular fraction. The authors recognized that Zn in the metallothionein fraction is substituted by Cd.  相似文献   

11.
Urea at 200 ppm (probably serving as a nitrogen source), liquid Bold's basal medium at pH 7.5, temperature of about 22 degrees C and light intensity of about 40 micromol m(-2) s(-1) for 16 h a day induced rapid and/or abundant zoospores formation and zoosporangia dehiscence and favored zoospore liberation, speed and motility time period in the green alga Rhizoclonium hieroglyphicum. However, factors such as water stress (2 and 4 % agarized media, liquid media with 0.2-0.4 mol/L NaCl, 5-60 min blot-dryness of filaments), pH extremes of liquid media (at < or =6.5 and > or =9.5), temperature shock in liquid media (5 and 35 degrees C for > or =5 min), UV exposure (0.96-3.84 kJ/m2), lack of all nutrients from liquid medium (double distilled water), darkness, and presence of "heavy" metals (1-25 ppm Cu, Fe, Zn, Hg, Ni, Co) or organic substances (200-600 ppm captan or DDT, 800 and 1000 ppm 2,4-D, 50 and 400 ppm indole-3-acetic acid (3-IAA), 1000 and 2000 ppm urea, 100 and 200 ppm thiourea) in liquid media decreased and/or delayed at various levels either zoosporangia survival, zoospore formation or zoosporangia dehiscence and/or the rate of zoospore liberation from zoosporangia, zoospore speed and time period of motility in the media or totally inhibited all these processes. 3-IAA at 50 and 400 ppm induced zoosporangial papilla to grow into a tube-like projection of about 30-120 microm in length. Zoosporangial dehiscence rather than zoospore formation or zoosporangia survival, and zoospore motility period rather than zoospore speed are probably more sensitive to various adverse environmental factors. The rate of zoospores liberation from zoosporangium (possibly related directly to some extent on the zoospore number inside) is probably independent of zoospore speed in the medium.  相似文献   

12.
Responses of tobacco (Nicotiana tabacum) suspension cells to Cd and Zn were studied in the presence and absence of ligand of Cd-peptide in order to understand the role of this peptide versus other mechanisms in Cd and Zn accumulation and accommodation in plants. With 45 micromolar Cd and 300 micromolar Zn (non-growth-inhibiting levels), metals appeared rapidly within cells, and intracellular Cd and Zn reached medium concentrations after 6 to 10 hours. Cd-peptide was observed in response to Cd after 2 hours, but this form only accounted for ~30% of soluble Cd after 24 hours. Peptide was not observed in cells exposed to 300 micromolar Zn for up to 7 days. Organic acid-to-metal stoichiometry indicated that endogenous organic acid content of cells was more than sufficient to complex absorbed metals and no evidence was found for stimulation of organic acid biosynthesis by Cd or Zn. Metal-complexing potential of organic acids for Cd and Zn versus endogenous cations is discussed as is vacuolar-extravacuolar distribution of metals. The absence of Cd-peptide does not limit Cd-accumulation in the system studied. Results suggest that tobacco suspension cells accommodate the presence of non-growth-inhibiting and growth-inhibiting levels of Cd and Zn by sequestration in the vacuole as complexes with endogenous organic acids and that this may be a principal means for accommodation of Cd as well as Zn in the presence and absence of Cd-peptide.  相似文献   

13.
Bovine kidneys were found to contain about 78 ppm Zn and 0.78 ppm Cd. Approximately 45% of Zn and 60% of Cd were present in the cytosol fraction. More than 95% of these two metals were bound to macromolecules. Both Zn- and Cd-protein complexes were observed to be stable between pH 7 and 10.5. Separation and characterization of these proteins were carried out using several chromatographic and electrophoretic techniques in conjunction with instrumental neutron activation analysis (INAA). The results showed the presence of at least four Zn-binding proteins with mol wt>300,000, 260,000, 89,000, and 27,000 and at least three Cd-binding proteins of mol wt>300,000, 32,000, and 13,000.  相似文献   

14.
Summary Humic acid affected nutrient uptake differently in sand culture. It generally increased Cu uptake, slightly, though insignificantly, increased Fe uptake and practically had no effect on Zn uptake. Such results agree fairly well with the relative stability of humic acid with these metals.When humic acid was added to sand culture at increasing concentration of the metal, it considerably increased dry weight, Cu uptake and Cu concentration through decreasing its toxicity to plant. With Fe, however, humic acid and Na2EDDHA slightly increased Fe uptake at lower Fe concentration (30 ppm) but significantly reduced both Fe uptake and Fe concentration in plant at higher concentration of Fe compared to the control treatment. Humic acid reduced Zn uptake and Zn concentration in plant at concentrations of 0.5–1.5 ppm Zn, and guarded against Zn toxicity which developed at higher concentration of Zn when no humic acid was added.  相似文献   

15.
The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength (mu) of 3 x 10(-4); montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 (the pH at which charge reversal occurred differed with the metal) and then, at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a mu of greater than 3 x 10(-4), whereas there was no reversal in solutions with a mu of less than 3 x 10(-4). The clays became net positively charged when the mu of Cu was greater than 3 x 10(-4) and that of Ni was greater than 1.5 x 10(-4). The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (mu = 3 x 10(-4)). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measure the electrophoretic mobility did not affect their viability. The specific adsorption on the cells and clays of the hydrolyzed species of some of the heavy metals that formed at higher pH values was probably responsible for the charge reversal. These results suggest that the toxicity of some heavy metals to microorganisms varies with pH because the hydrolyzed speciation forms of these metals, which occur at higher pH values, bind on the cell surface and alter the net charge of the cell.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength (mu) of 3 x 10(-4); montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 (the pH at which charge reversal occurred differed with the metal) and then, at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a mu of greater than 3 x 10(-4), whereas there was no reversal in solutions with a mu of less than 3 x 10(-4). The clays became net positively charged when the mu of Cu was greater than 3 x 10(-4) and that of Ni was greater than 1.5 x 10(-4). The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (mu = 3 x 10(-4)). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measure the electrophoretic mobility did not affect their viability. The specific adsorption on the cells and clays of the hydrolyzed species of some of the heavy metals that formed at higher pH values was probably responsible for the charge reversal. These results suggest that the toxicity of some heavy metals to microorganisms varies with pH because the hydrolyzed speciation forms of these metals, which occur at higher pH values, bind on the cell surface and alter the net charge of the cell.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.  相似文献   

18.
Cell nuclei may contain significant quantities of the metals Fe, Ni, Cu, Zn, since they are present in the nucleo-enzymes and/or nucleic acids. These metals have been detected by X-ray microanalysis in situ in dinoflagellates (Kearns et al). Aluminum was only detected in cell nuclei in cases of natural or provoked intoxication. We observed at the ultrastructural level, in situ, the presence of Al, Fe, Ni, Cu, Zn in nuclei of different types of non-intoxicated animal cells. Moreover, we measured the concentration of these metals in the nucleolus and chromatin and compared it with the concentration of P and S.  相似文献   

19.
采集我国12种土壤,进行盆栽水稻试验,结果表明:不同土壤上盆栽水稻糙米中镉、铜、锌、镍和铬的平均含量分别为0.035ppm、4.82ppm、23.45ppm、1.09ppm和0.102ppm,铅在糙米中未检出。 按自然地带划分,不同土壤上生长的糙米中6种元素除铬外,均以热带、亚热带湿润地区含量高。 不同土壤投加6种元素后种植水稻,以有机质含量高,pH适中的土壤上水稻生长较好,但各类土壤上生长的水稻均表现出受害症状。重金属在糙米中的累积随土壤pH升高而降低,随土壤有机质含量增高而减少。与土壤中<0.01毫米和<0.005毫米粒径含量呈负相关。  相似文献   

20.
Concentrations of 38 elements present in Macrocystis tissues are listed. Mean concentrations of Cu, Zn, Fe, and Mn were similar for samples of juvenile and adult sporophytes from field sites. Cu in Macrocystis tissues rose above background levels when concentrations of 0.05 to 0.1 μm were added to the culturing medium. Above-normal accumulation for Zn occurred at 0.1 μm and for Fe at 10 μm . Tissue Mn appeared independent of the ambient Mn concentration over the ranges studied. Computations indicated that upwelling is important for N and P renewal to Macrocystis beds but may be less significant for import of trace metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号